Lösung 2.3:2c
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
- | We start by completing the square of the left-hand side | + | We start by completing the square of the left-hand side, |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
+ | {{Displayed math||<math>\begin{align} | ||
+ | y^{2}+3y+4 &= \Bigl(y+\frac{3}{2}\Bigr)^{2} - \Bigl(\frac{3}{2}\Bigr)^{2}+4\\[5pt] | ||
+ | &= \Bigl(y+\frac{3}{2}\Bigr)^{2} - \frac{9}{4} + \frac{16}{4}\\[5pt] | ||
+ | &= \Bigl(y+\frac{3}{2}\Bigr)^{2} + \frac{7}{4}\,\textrm{.} | ||
+ | \end{align}</math>}} | ||
The equation is then | The equation is then | ||
+ | {{Displayed math||<math>\left( y+\frac{3}{2} \right)^{2}+\frac{7}{4}=0\,\textrm{.}</math>}} | ||
- | + | The first term <math>\bigl(y+\tfrac{3}{2}\bigr)^{2}</math> is always greater than or equal to zero because it is a square and <math>\tfrac{7}{4}</math> is a positive number. This means that the left hand side cannot be zero, regardless of how ''y'' is chosen. The equation has no solution. | |
- | + | ||
- | The first term | + | |
- | <math>\ | + | |
- | is always greater than or equal to zero because it is a square and | + | |
- | <math>\ | + | |
- | is a positive number. This means that the left hand side cannot be zero, regardless of how | + | |
- | + | ||
- | is chosen. The equation has no solution. | + |
Version vom 07:38, 29. Sep. 2008
We start by completing the square of the left-hand side,
The equation is then
The first term \displaystyle \bigl(y+\tfrac{3}{2}\bigr)^{2} is always greater than or equal to zero because it is a square and \displaystyle \tfrac{7}{4} is a positive number. This means that the left hand side cannot be zero, regardless of how y is chosen. The equation has no solution.