Lösung 4.2:4e

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 4.2:4e moved to Solution 4.2:4e: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
If we write the angle
-
<center> [[Image:4_2_4e.gif]] </center>
+
<math>\frac{7\pi }{6}</math>
-
{{NAVCONTENT_STOP}}
+
as
 +
 
 +
<math>\frac{7\pi }{6}=\frac{6\pi +\pi }{6}=\pi +\frac{\pi }{6}</math>
 +
 
 +
we see that the angle
 +
<math>\frac{7\pi }{6}</math>
 +
on a unit circle is in the third quadrant and makes an angle
 +
<math>\frac{\pi }{6}</math>
 +
with the negative
 +
<math>x</math>
 +
-axis.
 +
 
[[Image:4_2_4_e1.gif|center]]
[[Image:4_2_4_e1.gif|center]]
 +
 +
Geometrically,
 +
<math>\tan \frac{7\pi }{6}</math>
 +
is defined as the gradient of the line having an angle
 +
<math>\frac{7\pi }{6}</math>
 +
and, because this line has the same slope as the line having angle
 +
<math>\frac{\pi }{6}</math>, we have that
 +
 +
<math>\tan \frac{7\pi }{6}=\tan \frac{\pi }{6}=\frac{\sin \frac{\pi }{6}}{\cos \frac{\pi }{6}}=\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}}=\frac{1}{\sqrt{3}}</math>
 +
 +
[[Image:4_2_4_e2.gif|center]]
[[Image:4_2_4_e2.gif|center]]

Version vom 13:23, 28. Sep. 2008

If we write the angle \displaystyle \frac{7\pi }{6} as

\displaystyle \frac{7\pi }{6}=\frac{6\pi +\pi }{6}=\pi +\frac{\pi }{6}

we see that the angle \displaystyle \frac{7\pi }{6} on a unit circle is in the third quadrant and makes an angle \displaystyle \frac{\pi }{6} with the negative \displaystyle x -axis.

Geometrically, \displaystyle \tan \frac{7\pi }{6} is defined as the gradient of the line having an angle \displaystyle \frac{7\pi }{6} and, because this line has the same slope as the line having angle \displaystyle \frac{\pi }{6}, we have that

\displaystyle \tan \frac{7\pi }{6}=\tan \frac{\pi }{6}=\frac{\sin \frac{\pi }{6}}{\cos \frac{\pi }{6}}=\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}}=\frac{1}{\sqrt{3}}