Lösung 4.2:3d
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 4.2:3d moved to Solution 4.2:3d: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | In order to get an angle between |
- | < | + | <math>0</math> |
- | {{ | + | and |
+ | <math>\text{2}\pi </math>, we subtract | ||
+ | <math>\text{2}\pi </math> | ||
+ | from | ||
+ | <math>{7\pi }/{2}\;</math> | ||
+ | , which also leaves the cosine value unchanged | ||
+ | |||
+ | |||
+ | <math>\cos \frac{7\pi }{2}=\cos \left( \frac{7\pi }{2}-2\pi \right)=\cos \frac{3\pi }{2}</math> | ||
+ | |||
+ | |||
+ | When we draw a line which makes an angle | ||
+ | <math>{3\pi }/{2}\;</math> | ||
+ | with the positive | ||
+ | <math>x</math> | ||
+ | -axis, we get the negative | ||
+ | <math>y</math> | ||
+ | -axis and we see that this line cuts the unit circle at the point | ||
+ | <math>\left( 0 \right.,\left. -1 \right)</math>. The | ||
+ | <math>x</math> | ||
+ | -coordinate of the intersection point is thus | ||
+ | <math>0</math> | ||
+ | and hence | ||
+ | <math>\cos {7\pi }/{2}\;=\cos {3\pi }/{2}\;=0</math> | ||
+ | |||
+ | |||
+ | |||
[[Image:4_2_3_d.gif|center]] | [[Image:4_2_3_d.gif|center]] |
Version vom 12:06, 28. Sep. 2008
In order to get an angle between \displaystyle 0 and \displaystyle \text{2}\pi , we subtract \displaystyle \text{2}\pi from \displaystyle {7\pi }/{2}\; , which also leaves the cosine value unchanged
\displaystyle \cos \frac{7\pi }{2}=\cos \left( \frac{7\pi }{2}-2\pi \right)=\cos \frac{3\pi }{2}
When we draw a line which makes an angle
\displaystyle {3\pi }/{2}\;
with the positive
\displaystyle x
-axis, we get the negative
\displaystyle y
-axis and we see that this line cuts the unit circle at the point
\displaystyle \left( 0 \right.,\left. -1 \right). The
\displaystyle x
-coordinate of the intersection point is thus
\displaystyle 0
and hence
\displaystyle \cos {7\pi }/{2}\;=\cos {3\pi }/{2}\;=0