Lösung 4.2:3c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 4.2:3c moved to Solution 4.2:3c: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
 
-
<center> [[Image:4_2_3c.gif]] </center>
+
We can add and subtract multiples of
-
{{NAVCONTENT_STOP}}
+
<math>\text{2}\pi </math>
 +
to or from the argument of the sine function without changing its value. The angle
 +
<math>\text{2}\pi </math>
 +
corresponds to a whole turn in a unit circle and the sine function returns to the same value every time the angle changes by a complete revolution.
 +
 
 +
For example, if we can subtract sufficiently many
 +
<math>\text{2}\pi </math>
 +
s from
 +
<math>\text{9}\pi </math>, we will obtain a more manageable argument which lies between
 +
<math>0</math>
 +
and
 +
<math>\text{2}\pi </math>,
 +
 
 +
 
 +
<math>\text{sin 9}\pi =\text{sin}\left( 9\pi -2\pi -2\pi -2\pi -2\pi \right)=\sin \pi </math>
 +
 
 +
 
 +
The line which makes an angle
 +
<math>\pi </math>
 +
with the positive part of the
 +
<math>x</math>
 +
-axis is the negative part of the
 +
<math>x</math>
 +
-axis
 +
and it cuts the unit circle at the point
 +
<math>\left( -1 \right.,\left. 0 \right)</math>, which is why we can see from the
 +
<math>y</math>
 +
-coordinate that
 +
<math>\text{sin 9}\pi =\text{sin }\pi =0</math>.
 +
 
 +
 
 +
 
[[Image:4_2_3_c.gif|center]]
[[Image:4_2_3_c.gif|center]]

Version vom 11:57, 28. Sep. 2008

We can add and subtract multiples of \displaystyle \text{2}\pi to or from the argument of the sine function without changing its value. The angle \displaystyle \text{2}\pi corresponds to a whole turn in a unit circle and the sine function returns to the same value every time the angle changes by a complete revolution.

For example, if we can subtract sufficiently many \displaystyle \text{2}\pi s from \displaystyle \text{9}\pi , we will obtain a more manageable argument which lies between \displaystyle 0 and \displaystyle \text{2}\pi ,


\displaystyle \text{sin 9}\pi =\text{sin}\left( 9\pi -2\pi -2\pi -2\pi -2\pi \right)=\sin \pi


The line which makes an angle \displaystyle \pi with the positive part of the \displaystyle x -axis is the negative part of the \displaystyle x -axis and it cuts the unit circle at the point \displaystyle \left( -1 \right.,\left. 0 \right), which is why we can see from the \displaystyle y -coordinate that \displaystyle \text{sin 9}\pi =\text{sin }\pi =0.