Lösung 4.2:1d
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 4.2:1d moved to Solution 4.2:1d: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{NAVCONTENT_START}} | ||
- | <center> [[Image:4_2_1d.gif]] </center> | ||
- | {{NAVCONTENT_STOP}} | ||
[[Image:4_2_1_d.gif|center]] | [[Image:4_2_1_d.gif|center]] | ||
+ | |||
+ | The side marked | ||
+ | <math>x</math> | ||
+ | is the hypotenuse in the right-angled triangle and the side of length | ||
+ | <math>\text{16}</math> | ||
+ | is the adjacent to the angle of | ||
+ | <math>\text{2}0^{\circ }</math>. | ||
+ | |||
+ | |||
+ | By writing the quotient for | ||
+ | <math>\text{cos20}^{\circ }</math>, we obtain the relation | ||
+ | |||
+ | |||
+ | <math>\text{cos20}^{\circ }=\frac{16}{x}</math> | ||
+ | |||
+ | |||
+ | and this gives | ||
+ | |||
+ | |||
+ | <math>x=\frac{16}{\text{cos20}^{\circ }}\quad \left( \approx 17.0 \right).</math> |
Version vom 11:08, 28. Sep. 2008
The side marked \displaystyle x is the hypotenuse in the right-angled triangle and the side of length \displaystyle \text{16} is the adjacent to the angle of \displaystyle \text{2}0^{\circ }.
By writing the quotient for
\displaystyle \text{cos20}^{\circ }, we obtain the relation
\displaystyle \text{cos20}^{\circ }=\frac{16}{x}
and this gives
\displaystyle x=\frac{16}{\text{cos20}^{\circ }}\quad \left( \approx 17.0 \right).