Lösung 4.2:1d

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 4.2:1d moved to Solution 4.2:1d: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
 
-
<center> [[Image:4_2_1d.gif]] </center>
 
-
{{NAVCONTENT_STOP}}
 
[[Image:4_2_1_d.gif|center]]
[[Image:4_2_1_d.gif|center]]
 +
 +
The side marked
 +
<math>x</math>
 +
is the hypotenuse in the right-angled triangle and the side of length
 +
<math>\text{16}</math>
 +
is the adjacent to the angle of
 +
<math>\text{2}0^{\circ }</math>.
 +
 +
 +
By writing the quotient for
 +
<math>\text{cos20}^{\circ }</math>, we obtain the relation
 +
 +
 +
<math>\text{cos20}^{\circ }=\frac{16}{x}</math>
 +
 +
 +
and this gives
 +
 +
 +
<math>x=\frac{16}{\text{cos20}^{\circ }}\quad \left( \approx 17.0 \right).</math>

Version vom 11:08, 28. Sep. 2008

The side marked \displaystyle x is the hypotenuse in the right-angled triangle and the side of length \displaystyle \text{16} is the adjacent to the angle of \displaystyle \text{2}0^{\circ }.


By writing the quotient for \displaystyle \text{cos20}^{\circ }, we obtain the relation


\displaystyle \text{cos20}^{\circ }=\frac{16}{x}


and this gives


\displaystyle x=\frac{16}{\text{cos20}^{\circ }}\quad \left( \approx 17.0 \right).