Lösung 4.1:6c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 4.1:6c moved to Solution 4.1:6c: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
What we need to do is to rewrite the equation in the standard form
-
<center> [[Image:4_1_6c-1(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
 +
<math>\left( x-a \right)^{2}+\left( y-b \right)^{2}=r^{2}</math>
 +
 
 +
 
 +
because then we can read off the circle's centre
 +
<math>\left( a \right.,\left. b \right)</math>
 +
and radius,
 +
<math>r</math>.
 +
 
 +
In our case, we need only take out the factor
 +
<math>~\text{3}</math>
 +
from the brackets on the left-hand side
 +
 
 +
 
 +
<math>\begin{align}
 +
& \left( 3x-1 \right)^{2}+\left( 3y+7 \right)^{2}=3^{2}\left( x-\frac{1}{3} \right)^{2}+3^{2}\left( y+\frac{7}{3} \right)^{2} \\
 +
& =9\left( x-\frac{1}{3} \right)^{2}+9\left( y+\frac{7}{3} \right)^{2} \\
 +
\end{align}</math>
 +
 
 +
 
 +
and then divide both sides by
 +
<math>\text{9}</math>
 +
, so as to get the equation in the desired form:
 +
 
 +
 
 +
<math>\left( x-\frac{1}{3} \right)^{2}+\left( y+\frac{7}{3} \right)^{2}=\frac{10}{9}</math>
 +
 
 +
Because the right-hand side can be written as
 +
<math>\left( \sqrt{\frac{10}{9}} \right)^{2}</math>
 +
and the term
 +
<math>\left( y+\frac{7}{3} \right)^{2}</math>
 +
as
 +
<math></math>
 +
 
 +
<math>\left( y-\left( -\frac{7}{3} \right) \right)^{2}</math>, the equation describes a circle with its centre at
 +
<math>\left( \frac{1}{3} \right.,\left. -\frac{7}{3} \right)</math>
 +
and radius
 +
<math>\sqrt{\frac{10}{9}}=\frac{\sqrt{10}}{3}</math>
 +
 
{{NAVCONTENT_START}}
{{NAVCONTENT_START}}
<center> [[Image:4_1_6c-2(2).gif]] </center>
<center> [[Image:4_1_6c-2(2).gif]] </center>
{{NAVCONTENT_STOP}}
{{NAVCONTENT_STOP}}

Version vom 11:45, 27. Sep. 2008

What we need to do is to rewrite the equation in the standard form


\displaystyle \left( x-a \right)^{2}+\left( y-b \right)^{2}=r^{2}


because then we can read off the circle's centre \displaystyle \left( a \right.,\left. b \right) and radius, \displaystyle r.

In our case, we need only take out the factor \displaystyle ~\text{3} from the brackets on the left-hand side


\displaystyle \begin{align} & \left( 3x-1 \right)^{2}+\left( 3y+7 \right)^{2}=3^{2}\left( x-\frac{1}{3} \right)^{2}+3^{2}\left( y+\frac{7}{3} \right)^{2} \\ & =9\left( x-\frac{1}{3} \right)^{2}+9\left( y+\frac{7}{3} \right)^{2} \\ \end{align}


and then divide both sides by \displaystyle \text{9} , so as to get the equation in the desired form:


\displaystyle \left( x-\frac{1}{3} \right)^{2}+\left( y+\frac{7}{3} \right)^{2}=\frac{10}{9}

Because the right-hand side can be written as \displaystyle \left( \sqrt{\frac{10}{9}} \right)^{2} and the term \displaystyle \left( y+\frac{7}{3} \right)^{2} as \displaystyle

\displaystyle \left( y-\left( -\frac{7}{3} \right) \right)^{2}, the equation describes a circle with its centre at \displaystyle \left( \frac{1}{3} \right.,\left. -\frac{7}{3} \right) and radius \displaystyle \sqrt{\frac{10}{9}}=\frac{\sqrt{10}}{3}