Lösung 4.1:5b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 4.1:5b moved to Solution 4.1:5b: Robot: moved page)
Zeile 1: Zeile 1:
 +
If the circle is to contain the point
 +
<math>\left( -1 \right.,\left. 1 \right)</math>, then that point's distance away from the centre
 +
<math>\left( 2 \right.,\left. -1 \right)</math>
 +
must equal the circle's radius,
 +
<math>r</math>. Thus, we can obtain the circle's radius by calculating the distance between
 +
<math>\left( -1 \right.,\left. 1 \right)</math>
 +
and
 +
<math>\left( 2 \right.,\left. -1 \right)</math>
 +
using the distance formula:
 +
 +
 +
<math>\begin{align}
 +
& r=\sqrt{\left( 2-\left( -1 \right) \right)^{2}+\left( -1-1 \right)^{2}}=\sqrt{3^{2}+\left( -2 \right)^{2}} \\
 +
& =\sqrt{9+4}=\sqrt{13} \\
 +
\end{align}</math>
 +
 +
 +
When we know the circle's centre and its radius, we can write the equation of the circle,
 +
 +
 +
<math>\left( x-2 \right)^{2}+\left( y-\left( -1 \right) \right)^{2}=\left( \sqrt{13} \right)^{2}</math>
 +
 +
 +
which the same as
 +
 +
 +
<math>\left( x-2 \right)^{2}+\left( y+1 \right)^{2}=13</math>
 +
{{NAVCONTENT_START}}
{{NAVCONTENT_START}}
[[Image:4_1_5_b-1(2).gif|center]]
[[Image:4_1_5_b-1(2).gif|center]]
-
<center> [[Image:4_1_5b-1(2).gif]] </center>
 
-
{{NAVCONTENT_STOP}}
 
-
{{NAVCONTENT_START}}
 
-
<center> [[Image:4_1_5b-2(2).gif]] </center>
 
{{NAVCONTENT_STOP}}
{{NAVCONTENT_STOP}}
 +
 +
NOTE: A circle having its centre at
 +
<math>\left( a \right.,\left. b \right)</math>
 +
and radius
 +
<math>r</math>
 +
has the equation
 +
 +
 +
<math>\left( x-a \right)^{2}+\left( y-b \right)2=r^{2}</math>

Version vom 11:20, 27. Sep. 2008

If the circle is to contain the point \displaystyle \left( -1 \right.,\left. 1 \right), then that point's distance away from the centre \displaystyle \left( 2 \right.,\left. -1 \right) must equal the circle's radius, \displaystyle r. Thus, we can obtain the circle's radius by calculating the distance between \displaystyle \left( -1 \right.,\left. 1 \right) and \displaystyle \left( 2 \right.,\left. -1 \right) using the distance formula:


\displaystyle \begin{align} & r=\sqrt{\left( 2-\left( -1 \right) \right)^{2}+\left( -1-1 \right)^{2}}=\sqrt{3^{2}+\left( -2 \right)^{2}} \\ & =\sqrt{9+4}=\sqrt{13} \\ \end{align}


When we know the circle's centre and its radius, we can write the equation of the circle,


\displaystyle \left( x-2 \right)^{2}+\left( y-\left( -1 \right) \right)^{2}=\left( \sqrt{13} \right)^{2}


which the same as


\displaystyle \left( x-2 \right)^{2}+\left( y+1 \right)^{2}=13

NOTE: A circle having its centre at \displaystyle \left( a \right.,\left. b \right) and radius \displaystyle r has the equation


\displaystyle \left( x-a \right)^{2}+\left( y-b \right)2=r^{2}