Lösung 4.1:2
Aus Online Mathematik Brückenkurs 1
K (Lösning 4.1:2 moved to Solution 4.1:2: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | If we use the mnemonic that one turn is |
- | < | + | <math>360^{\circ }</math> |
- | {{ | + | or |
+ | <math>\text{2}\pi </math> | ||
+ | radians, we can derive a formula for the transformation from degrees to radians. Because | ||
+ | |||
+ | |||
+ | <math>360^{\circ }\centerdot 1^{\circ }=2\pi </math> | ||
+ | radians | ||
+ | |||
+ | this gives | ||
+ | |||
+ | |||
+ | <math>1^{\circ }=\frac{2\pi }{360}</math> | ||
+ | radians | ||
+ | <math>=\frac{\pi }{180}</math> | ||
+ | radians | ||
+ | |||
+ | Now we can start transforming the angles: | ||
+ | |||
+ | a) | ||
+ | <math>45^{\circ }=45\centerdot 1^{\circ }=45\centerdot \frac{\pi }{180}</math> | ||
+ | radians | ||
+ | <math>=\frac{\pi }{4}</math> | ||
+ | radians | ||
+ | |||
+ | b) | ||
+ | <math>135^{\circ }=135\centerdot 1^{\circ }=135\centerdot \frac{\pi }{180}</math> | ||
+ | radians | ||
+ | <math>=\frac{3\pi }{4}</math> | ||
+ | radians | ||
+ | |||
+ | c) | ||
+ | <math>-63^{\circ }=-63\centerdot 1^{\circ }=-63\centerdot \frac{\pi }{180}</math> | ||
+ | radians | ||
+ | <math>=-\frac{7\pi }{20}</math> | ||
+ | radians | ||
+ | |||
+ | d) | ||
+ | <math>270^{\circ }=270\centerdot 1^{\circ }=270\centerdot \frac{\pi }{180}</math> | ||
+ | radians | ||
+ | <math>=\frac{3\pi }{2}</math> | ||
+ | radians |
Version vom 09:17, 27. Sep. 2008
If we use the mnemonic that one turn is \displaystyle 360^{\circ } or \displaystyle \text{2}\pi radians, we can derive a formula for the transformation from degrees to radians. Because
\displaystyle 360^{\circ }\centerdot 1^{\circ }=2\pi
radians
this gives
\displaystyle 1^{\circ }=\frac{2\pi }{360}
radians
\displaystyle =\frac{\pi }{180}
radians
Now we can start transforming the angles:
a) \displaystyle 45^{\circ }=45\centerdot 1^{\circ }=45\centerdot \frac{\pi }{180} radians \displaystyle =\frac{\pi }{4} radians
b) \displaystyle 135^{\circ }=135\centerdot 1^{\circ }=135\centerdot \frac{\pi }{180} radians \displaystyle =\frac{3\pi }{4} radians
c) \displaystyle -63^{\circ }=-63\centerdot 1^{\circ }=-63\centerdot \frac{\pi }{180} radians \displaystyle =-\frac{7\pi }{20} radians
d) \displaystyle 270^{\circ }=270\centerdot 1^{\circ }=270\centerdot \frac{\pi }{180} radians \displaystyle =\frac{3\pi }{2} radians