Lösung 4.1:2

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 4.1:2 moved to Solution 4.1:2: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
If we use the mnemonic that one turn is
-
<center> [[Image:4_1_2.gif]] </center>
+
<math>360^{\circ }</math>
-
{{NAVCONTENT_STOP}}
+
or
 +
<math>\text{2}\pi </math>
 +
radians, we can derive a formula for the transformation from degrees to radians. Because
 +
 
 +
 
 +
<math>360^{\circ }\centerdot 1^{\circ }=2\pi </math>
 +
radians
 +
 
 +
this gives
 +
 
 +
 
 +
<math>1^{\circ }=\frac{2\pi }{360}</math>
 +
radians
 +
<math>=\frac{\pi }{180}</math>
 +
radians
 +
 
 +
Now we can start transforming the angles:
 +
 
 +
a)
 +
<math>45^{\circ }=45\centerdot 1^{\circ }=45\centerdot \frac{\pi }{180}</math>
 +
radians
 +
<math>=\frac{\pi }{4}</math>
 +
radians
 +
 
 +
b)
 +
<math>135^{\circ }=135\centerdot 1^{\circ }=135\centerdot \frac{\pi }{180}</math>
 +
radians
 +
<math>=\frac{3\pi }{4}</math>
 +
radians
 +
 
 +
c)
 +
<math>-63^{\circ }=-63\centerdot 1^{\circ }=-63\centerdot \frac{\pi }{180}</math>
 +
radians
 +
<math>=-\frac{7\pi }{20}</math>
 +
radians
 +
 
 +
d)
 +
<math>270^{\circ }=270\centerdot 1^{\circ }=270\centerdot \frac{\pi }{180}</math>
 +
radians
 +
<math>=\frac{3\pi }{2}</math>
 +
radians

Version vom 09:17, 27. Sep. 2008

If we use the mnemonic that one turn is \displaystyle 360^{\circ } or \displaystyle \text{2}\pi radians, we can derive a formula for the transformation from degrees to radians. Because


\displaystyle 360^{\circ }\centerdot 1^{\circ }=2\pi radians

this gives


\displaystyle 1^{\circ }=\frac{2\pi }{360} radians \displaystyle =\frac{\pi }{180} radians

Now we can start transforming the angles:

a) \displaystyle 45^{\circ }=45\centerdot 1^{\circ }=45\centerdot \frac{\pi }{180} radians \displaystyle =\frac{\pi }{4} radians

b) \displaystyle 135^{\circ }=135\centerdot 1^{\circ }=135\centerdot \frac{\pi }{180} radians \displaystyle =\frac{3\pi }{4} radians

c) \displaystyle -63^{\circ }=-63\centerdot 1^{\circ }=-63\centerdot \frac{\pi }{180} radians \displaystyle =-\frac{7\pi }{20} radians

d) \displaystyle 270^{\circ }=270\centerdot 1^{\circ }=270\centerdot \frac{\pi }{180} radians \displaystyle =\frac{3\pi }{2} radians