Lösung 2.3:1c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 2: Zeile 2:
<math>2x-x^{2}</math>, which we also can write as <math>-(x^{2}-2x)</math>. If we neglect the minus sign, we can complete square of the expression <math>2x-x^{2}</math> by using the formula
<math>2x-x^{2}</math>, which we also can write as <math>-(x^{2}-2x)</math>. If we neglect the minus sign, we can complete square of the expression <math>2x-x^{2}</math> by using the formula
-
{{Displayed math||<math>x^{2}-ax = \biggl(x-\frac{a}{2}\biggr)^{2} - \biggl(\frac{a}{2}\biggr)^{2}</math>}}
+
{{Displayed math||<math>x^{2}-ax = \Bigl(x-\frac{a}{2}\Bigr)^{2} - \Bigl(\frac{a}{2}\Bigr)^{2}</math>}}
and we obtain
and we obtain
-
{{Displayed math||<math>x^{2}-2x = \biggl(x-\frac{2}{2}\biggr)^{2} - \biggl(\frac{2}{2}\biggr)^{2} = (x-1)^{2}-1\,\textrm{.}</math>}}
+
{{Displayed math||<math>x^{2}-2x = \Bigl(x-\frac{2}{2}\Bigr)^{2} - \Bigl(\frac{2}{2}\Bigr)^{2} = (x-1)^{2}-1\,\textrm{.}</math>}}
This means that
This means that

Version vom 14:08, 26. Sep. 2008

As always when completing the square, we focus on the quadratic and linear terms \displaystyle 2x-x^{2}, which we also can write as \displaystyle -(x^{2}-2x). If we neglect the minus sign, we can complete square of the expression \displaystyle 2x-x^{2} by using the formula

Vorlage:Displayed math

and we obtain

Vorlage:Displayed math

This means that

Vorlage:Displayed math

A quick check shows that we have completed the square correctly

Vorlage:Displayed math