Lösung 2.3:1d

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
We apply the standard formula for completing the square,
We apply the standard formula for completing the square,
-
 
+
{{Displayed math||<math>x^{2}+ax = \Bigl(x+\frac{a}{2}\Bigr)^{2} - \Bigl(\frac{a}{2}\Bigr)^{2}\,\textrm{,}</math>}}
-
<math>x^{2}+ax=\left( x+\frac{a}{2} \right)^{2}-\left( \frac{a}{2} \right)^{2}</math>
+
on our expression and this gives
on our expression and this gives
-
 
+
{{Displayed math||<math>x^{2}+5x = \Bigl(x+\frac{5}{2}\Bigr)^{2} - \Bigl(\frac{5}{2}\Bigr)^{2} = \Bigl(x+\frac{5}{2}\Bigr)^{2} - \frac{25}{4}\,\textrm{.}</math>}}
-
<math>x^{2}+5x=\left( x+\frac{5}{2} \right)^{2}-\left( \frac{5}{2} \right)^{2}=\left( x+\frac{5}{2} \right)^{2}-\frac{25}{4}</math>
+
The whole expression becomes
The whole expression becomes
 +
{{Displayed math||<math>\begin{align}
 +
x^{2}+5x+3
 +
&= \Bigl(x+\frac{5}{2}\Bigr)^{2} - \frac{25}{4}+3\\[5pt]
 +
&= \Bigl(x+\frac{5}{2}\Bigr)^{2} - \frac{25}{4} + \frac{12}{4}\\[5pt]
 +
&= \Bigl(x+\frac{5}{2}\Bigr)^{2} + \frac{12-25}{4}\\[5pt]
 +
&= \Bigl(x+\frac{5}{2}\Bigr)^{2} - \frac{13}{4}\,\textrm{.}
 +
\end{align}</math>}}
-
<math>\begin{align}
+
A quick check shows that we have calculated correctly
-
& x^{2}+5x+3=\left( x+\frac{5}{2} \right)^{2}-\frac{25}{4}+3=\left( x+\frac{5}{2} \right)^{2}-\frac{25}{4}+\frac{12}{4} \\
+
-
& =\left( x+\frac{5}{2} \right)^{2}+\frac{12-25}{4}=\left( x+\frac{5}{2} \right)^{2}-\frac{13}{4} \\
+
-
\end{align}</math>
+
-
 
+
-
 
+
-
A quick check shows that we have calculated correctly.
+
-
 
+
-
<math>\begin{align}
+
{{Displayed math||<math>\begin{align}
-
& \left( x+\frac{5}{2} \right)^{2}-\frac{13}{4}=x^{2}+2\centerdot \frac{5}{2}\centerdot x+\left( \frac{5}{2} \right)^{2}-\frac{13}{4}=x^{2}+5x+\frac{25}{4}-\frac{13}{4} \\
+
\Bigl(x+\frac{5}{2}\Bigr)^{2} - \frac{13}{4}
-
& =x^{2}+5x+\frac{12}{4}=x^{2}+5x+3 \\
+
&= x^{2} + 2\cdot\frac{5}{2}\cdot x + \Bigl(\frac{5}{2}\Bigr)^{2} - \frac{13}{4}\\[5pt]
-
\end{align}</math>
+
&= x^{2} + 5x + \frac{25}{4} - \frac{13}{4}\\[5pt]
 +
&= x^{2} + 5x + \frac{12}{4}\\[5pt]
 +
&= x^{2}+5x+3\,\textrm{.}
 +
\end{align}</math>}}

Version vom 14:06, 26. Sep. 2008

We apply the standard formula for completing the square,

Vorlage:Displayed math

on our expression and this gives

Vorlage:Displayed math

The whole expression becomes

Vorlage:Displayed math

A quick check shows that we have calculated correctly

Vorlage:Displayed math