Lösung 3.3:6c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 3.3:6c moved to Solution 3.3:6c: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
Before we even start thinking about transforming
-
<center> [[Image:3_3_6c-1(2).gif]] </center>
+
<math>\log _{2}</math>
-
{{NAVCONTENT_STOP}}
+
and
-
{{NAVCONTENT_START}}
+
<math>\log _{3}</math>
-
<center> [[Image:3_3_6c-2(2).gif]] </center>
+
to ln, we use the log laws
-
{{NAVCONTENT_STOP}}
+
 
-
[[Image:3_3_6_c.gif|center]]
+
 
 +
<math>\lg a^{b}=b\centerdot \lg a</math>
 +
 
 +
 
 +
<math>\lg \left( a\centerdot b \right)=\lg a+\lg b</math>
 +
 
 +
 
 +
to simplify the expression
 +
 
 +
 
 +
<math>\begin{align}
 +
& \log _{3}\log _{2}3^{118}=\log _{3}\left( 118\centerdot \log _{2}3 \right) \\
 +
& =\log _{3}118+\log _{3}\log _{2}3 \\
 +
\end{align}</math>
 +
 
 +
 
 +
With help of the relation
 +
 
 +
 
 +
<math>2^{\log _{2}x}=x</math>
 +
and
 +
<math>3^{\log _{3}x}=x</math>
 +
 +
 
 +
and taking the natural logarithm , we can express
 +
<math>\log _{2}</math>
 +
and
 +
<math>\log _{3}</math>
 +
using ln,
 +
 
 +
 
 +
<math>\log _{2}x=\frac{\ln x}{\ln 2}</math>
 +
and
 +
<math>\log _{3}x=\frac{\ln x}{\ln 3}</math>
 +
 
 +
 
 +
 
 +
The two terms log3 118 and log3 log2 3 can therefore be written as
 +
 
 +
 
 +
<math>\log _{3}118=\frac{\ln 118}{\ln 3}</math>
 +
and
 +
<math>\log _{3}\log _{2}3=\log _{3}\left( \frac{\ln 3}{\ln 2} \right),</math>
 +
 
 +
 
 +
where we can simplify the last expression further with the logarithm law, log a/b = log a – log b, and then transform
 +
<math>\log _{3}</math>
 +
to ln,
 +
 
 +
 
 +
<math>\begin{align}
 +
& \log _{3}\left( \frac{\ln 3}{\ln 2} \right)=\log _{3}\ln 3-\log _{3}\ln 2 \\
 +
& =\frac{\ln \ln 3}{\ln 3}-\frac{\ln 2}{\ln 3} \\
 +
\end{align}</math>
 +
 
 +
 
 +
In all, we thus obtain
 +
 
 +
 
 +
<math>\log _{3}\log _{2}3^{118}=\frac{\ln 118}{\ln 3}+\frac{\ln \ln 3}{\ln 3}-\frac{\ln 2}{\ln 3}</math>
 +
 
 +
 
 +
Input into the calculator gives
 +
 
 +
 
 +
<math>\log _{3}\log _{2}3^{118}\approx 4.762</math>
 +
 
 +
 
 +
 
 +
NOTE: the button sequence on a calculator will be:
 +
 
 +
 
 +
 
 +
<math>\begin{align}
 +
& \left[ 1 \right]\quad \left[ 1 \right]\quad \left[ 8 \right]\quad \left[ \text{LN} \right]\quad \left[ \div \right]\quad \left[ 3 \right]\quad \left[ \text{LN} \right]\quad \left[ + \right] \\
 +
& \left[ 3 \right]\quad \left[ \text{LN} \right]\quad \left[ \text{LN} \right]\quad \left[ \div \right]\quad \left[ 3 \right]\quad \left[ \text{LN} \right]\quad \left[ - \right]\quad \left[ 2 \right] \\
 +
& \left[ \text{LN} \right]\quad \left[ \text{LN} \right]\quad \left[ \div \right]\quad \left[ 3 \right]\quad \left[ \text{LN} \right]\quad \left[ = \right] \\
 +
& \quad \\
 +
\end{align}</math>

Version vom 09:49, 26. Sep. 2008

Before we even start thinking about transforming \displaystyle \log _{2} and \displaystyle \log _{3} to ln, we use the log laws


\displaystyle \lg a^{b}=b\centerdot \lg a


\displaystyle \lg \left( a\centerdot b \right)=\lg a+\lg b


to simplify the expression


\displaystyle \begin{align} & \log _{3}\log _{2}3^{118}=\log _{3}\left( 118\centerdot \log _{2}3 \right) \\ & =\log _{3}118+\log _{3}\log _{2}3 \\ \end{align}


With help of the relation


\displaystyle 2^{\log _{2}x}=x and \displaystyle 3^{\log _{3}x}=x


and taking the natural logarithm , we can express \displaystyle \log _{2} and \displaystyle \log _{3} using ln,


\displaystyle \log _{2}x=\frac{\ln x}{\ln 2} and \displaystyle \log _{3}x=\frac{\ln x}{\ln 3}


The two terms log3 118 and log3 log2 3 can therefore be written as


\displaystyle \log _{3}118=\frac{\ln 118}{\ln 3} and \displaystyle \log _{3}\log _{2}3=\log _{3}\left( \frac{\ln 3}{\ln 2} \right),


where we can simplify the last expression further with the logarithm law, log a/b = log a – log b, and then transform \displaystyle \log _{3} to ln,


\displaystyle \begin{align} & \log _{3}\left( \frac{\ln 3}{\ln 2} \right)=\log _{3}\ln 3-\log _{3}\ln 2 \\ & =\frac{\ln \ln 3}{\ln 3}-\frac{\ln 2}{\ln 3} \\ \end{align}


In all, we thus obtain


\displaystyle \log _{3}\log _{2}3^{118}=\frac{\ln 118}{\ln 3}+\frac{\ln \ln 3}{\ln 3}-\frac{\ln 2}{\ln 3}


Input into the calculator gives


\displaystyle \log _{3}\log _{2}3^{118}\approx 4.762


NOTE: the button sequence on a calculator will be:


\displaystyle \begin{align} & \left[ 1 \right]\quad \left[ 1 \right]\quad \left[ 8 \right]\quad \left[ \text{LN} \right]\quad \left[ \div \right]\quad \left[ 3 \right]\quad \left[ \text{LN} \right]\quad \left[ + \right] \\ & \left[ 3 \right]\quad \left[ \text{LN} \right]\quad \left[ \text{LN} \right]\quad \left[ \div \right]\quad \left[ 3 \right]\quad \left[ \text{LN} \right]\quad \left[ - \right]\quad \left[ 2 \right] \\ & \left[ \text{LN} \right]\quad \left[ \text{LN} \right]\quad \left[ \div \right]\quad \left[ 3 \right]\quad \left[ \text{LN} \right]\quad \left[ = \right] \\ & \quad \\ \end{align}