Lösung 3.3:5b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 3.3:5b moved to Solution 3.3:5b: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
By using the logarithm laws,
-
<center> [[Image:3_3_5b.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
 +
<math>\lg a+\lg b=\lg \left( a\centerdot b \right)</math>
 +
 
 +
 
 +
<math>\text{log }a-\text{ log }b=\text{log}\left( \frac{a}{b} \right)</math>
 +
 
 +
we can collect together the terms into one logarithmic expression
 +
 
 +
 
 +
<math>\begin{align}
 +
& \ln 8-\ln 4-\ln 2=\ln 8-\left( \ln 4+\ln 2 \right)=\ln 8-\ln \left( 4\centerdot 2 \right) \\
 +
& =\ln \frac{8}{4\centerdot 2}=\ln 1=0, \\
 +
\end{align}</math>
 +
 
 +
 
 +
where ln 1 =0, since
 +
<math>e^{0}=1</math>
 +
(the equality
 +
<math>a^{0}=1</math>
 +
holds for all
 +
<math>a\ne 0</math>
 +
).

Version vom 08:26, 26. Sep. 2008

By using the logarithm laws,


\displaystyle \lg a+\lg b=\lg \left( a\centerdot b \right)


\displaystyle \text{log }a-\text{ log }b=\text{log}\left( \frac{a}{b} \right)

we can collect together the terms into one logarithmic expression


\displaystyle \begin{align} & \ln 8-\ln 4-\ln 2=\ln 8-\left( \ln 4+\ln 2 \right)=\ln 8-\ln \left( 4\centerdot 2 \right) \\ & =\ln \frac{8}{4\centerdot 2}=\ln 1=0, \\ \end{align}


where ln 1 =0, since \displaystyle e^{0}=1 (the equality \displaystyle a^{0}=1 holds for all \displaystyle a\ne 0 ).