Lösung 3.3:4c
Aus Online Mathematik Brückenkurs 1
K (Lösning 3.3:4c moved to Solution 3.3:4c: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | All three arguments of the logarithm can be written as powers of |
- | < | + | <math>\text{3}</math>, |
- | {{ | + | |
+ | <math>\begin{align} | ||
+ | & 27^{\frac{1}{3}}=\left( 3^{3} \right)^{\frac{1}{3}}=3^{3\centerdot \frac{1}{3}}=3^{1}=3, \\ | ||
+ | & \frac{1}{9}=\frac{1}{3^{2}}=3^{-2} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | |||
+ | and it is therefore appropriate to use base | ||
+ | <math>\text{3}</math> | ||
+ | when simplifying using the logarithms, even if we have the base | ||
+ | <math>\text{1}0</math> | ||
+ | logarithm, lg, | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \lg 27^{\frac{1}{3}}+\frac{\lg 3}{2}+\lg \frac{1}{9}=\lg 3+\frac{1}{2}\lg 3+\lg 3^{-2} \\ | ||
+ | & =\lg 3+\frac{1}{2}\lg 3+\left( -2 \right)\centerdot \lg 3 \\ | ||
+ | & =\left( 1+\frac{1}{2}-2 \right)\lg 3=-\frac{1}{2}\lg 3 \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | This expression cannot be simplified any further. |
Version vom 14:58, 25. Sep. 2008
All three arguments of the logarithm can be written as powers of \displaystyle \text{3},
\displaystyle \begin{align} & 27^{\frac{1}{3}}=\left( 3^{3} \right)^{\frac{1}{3}}=3^{3\centerdot \frac{1}{3}}=3^{1}=3, \\ & \frac{1}{9}=\frac{1}{3^{2}}=3^{-2} \\ \end{align}
and it is therefore appropriate to use base \displaystyle \text{3} when simplifying using the logarithms, even if we have the base \displaystyle \text{1}0 logarithm, lg,
\displaystyle \begin{align}
& \lg 27^{\frac{1}{3}}+\frac{\lg 3}{2}+\lg \frac{1}{9}=\lg 3+\frac{1}{2}\lg 3+\lg 3^{-2} \\
& =\lg 3+\frac{1}{2}\lg 3+\left( -2 \right)\centerdot \lg 3 \\
& =\left( 1+\frac{1}{2}-2 \right)\lg 3=-\frac{1}{2}\lg 3 \\
\end{align}
This expression cannot be simplified any further.