Lösung 3.3:3h
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 3.3:3h moved to Solution 3.3:3h: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | Because |
- | < | + | <math>a^{2}\sqrt{a}=a^{2}a^{\frac{1}{2}}=a^{2+\frac{1}{2}}=a^{\frac{5}{2}}</math>, the logarithm law, |
- | {{ | + | <math>b\lg a=\lg a^{b}</math>, gives that |
+ | |||
+ | |||
+ | <math>\log _{a}a^{2}\sqrt{a}=\log _{a}a^{\frac{5}{2}}=\frac{5}{2}\centerdot \log _{a}a=\frac{5}{2}\centerdot 1=\frac{5}{2},</math> | ||
+ | |||
+ | |||
+ | where we have used that | ||
+ | <math>\log _{a}a=1</math>. | ||
+ | |||
+ | NOTE: In this exercise, we assume, implicitly, that | ||
+ | <math>\text{a}>0\text{ }</math> | ||
+ | and | ||
+ | <math>\text{a}\ne \text{1}</math>. |
Version vom 14:41, 25. Sep. 2008
Because \displaystyle a^{2}\sqrt{a}=a^{2}a^{\frac{1}{2}}=a^{2+\frac{1}{2}}=a^{\frac{5}{2}}, the logarithm law, \displaystyle b\lg a=\lg a^{b}, gives that
\displaystyle \log _{a}a^{2}\sqrt{a}=\log _{a}a^{\frac{5}{2}}=\frac{5}{2}\centerdot \log _{a}a=\frac{5}{2}\centerdot 1=\frac{5}{2},
where we have used that
\displaystyle \log _{a}a=1.
NOTE: In this exercise, we assume, implicitly, that \displaystyle \text{a}>0\text{ } and \displaystyle \text{a}\ne \text{1}.