Lösung 3.3:3g
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| K  (Lösning 3.3:3g moved to Solution 3.3:3g: Robot: moved page) | |||
| Zeile 1: | Zeile 1: | ||
| - | {{ | + | Using the logarithm law,  | 
| - | < | + | <math>\lg a-\lg b=\lg \left( \frac{a}{b} \right)</math>, the expression can be calculated as  | 
| - | {{ | + | |
| + | |||
| + | <math>\log _{3}12-\log _{3}4=\log _{3}\frac{12}{4}=\log _{3}3=1</math> | ||
| + | |||
| + | |||
| + | Another way is to write   | ||
| + | <math>\text{12}=\text{3}\centerdot \text{4 }</math> | ||
| + | and use the logarithm law,  | ||
| + | <math>\lg \left( ab \right)=\lg a+\lg b</math>, | ||
| + | |||
| + | |||
| + | <math>\begin{align} | ||
| + | & \log _{3}12-\log _{3}4=\log _{3}\left( 3\centerdot 4 \right)-\log _{3}4 \\  | ||
| + | & =\log _{3}3+\log _{3}4-\log _{3}4=\log _{3}3=1 \\  | ||
| + | \end{align}</math> | ||
Version vom 14:33, 25. Sep. 2008
Using the logarithm law, \displaystyle \lg a-\lg b=\lg \left( \frac{a}{b} \right), the expression can be calculated as
\displaystyle \log _{3}12-\log _{3}4=\log _{3}\frac{12}{4}=\log _{3}3=1
Another way is to write  
\displaystyle \text{12}=\text{3}\centerdot \text{4 }
and use the logarithm law, 
\displaystyle \lg \left( ab \right)=\lg a+\lg b,
\displaystyle \begin{align}
& \log _{3}12-\log _{3}4=\log _{3}\left( 3\centerdot 4 \right)-\log _{3}4 \\ 
& =\log _{3}3+\log _{3}4-\log _{3}4=\log _{3}3=1 \\ 
\end{align}
 
		  