Lösung 3.3:3f

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 3.3:3f moved to Solution 3.3:3f: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
If we write
-
<center> [[Image:3_3_3f.gif]] </center>
+
<math>\text{4}</math>
-
{{NAVCONTENT_STOP}}
+
and
 +
<math>\text{16}</math>
 +
as
 +
 
 +
 
 +
<math>\begin{align}
 +
& \text{4}=2\centerdot 2=2^{2} \\
 +
& 16=2\centerdot 8=2\centerdot 2\centerdot 4=2\centerdot 2\centerdot 2\centerdot 2=2^{4} \\
 +
\end{align}</math>
 +
 
 +
 
 +
we obtain
 +
 
 +
 
 +
<math>\begin{align}
 +
& \log _{2}4+\log _{2}\frac{1}{16}=\log _{2}2^{2}+\log _{2}\frac{1}{2^{4}} \\
 +
& =\log _{2}2^{2}+\log _{2}2^{-4}=2\centerdot \log _{2}2+\left( -4 \right)\centerdot \log _{2}2 \\
 +
& =2\centerdot 1+\left( -4 \right)\centerdot 1=-2 \\
 +
\end{align}</math>

Version vom 14:28, 25. Sep. 2008

If we write \displaystyle \text{4} and \displaystyle \text{16} as


\displaystyle \begin{align} & \text{4}=2\centerdot 2=2^{2} \\ & 16=2\centerdot 8=2\centerdot 2\centerdot 4=2\centerdot 2\centerdot 2\centerdot 2=2^{4} \\ \end{align}


we obtain


\displaystyle \begin{align} & \log _{2}4+\log _{2}\frac{1}{16}=\log _{2}2^{2}+\log _{2}\frac{1}{2^{4}} \\ & =\log _{2}2^{2}+\log _{2}2^{-4}=2\centerdot \log _{2}2+\left( -4 \right)\centerdot \log _{2}2 \\ & =2\centerdot 1+\left( -4 \right)\centerdot 1=-2 \\ \end{align}