Lösung 3.3:3d
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| K  (Lösning 3.3:3d moved to Solution 3.3:3d: Robot: moved page) | |||
| Zeile 1: | Zeile 1: | ||
| - | {{ | + | We write the argument of  | 
| - | < | + | <math>\log _{3}</math> | 
| - | {{ | + | as a power of  | 
| + | <math>\text{3}</math>, | ||
| + | |||
| + | |||
| + | <math>9\centerdot 3^{{1}/{3}\;}=3^{2}\centerdot 3^{{1}/{3}\;}=3^{2+\frac{1}{3}}=3^{\frac{7}{3}}</math> | ||
| + | |||
| + | |||
| + | and then simplify the expression with the logarithm laws: | ||
| + | |||
| + | |||
| + | <math>\log _{3}\left( 9\centerdot 3^{{1}/{3}\;} \right)=\log _{3}3^{\frac{7}{3}}=\frac{7}{3}\centerdot \log _{3}3=\frac{7}{3}\centerdot 1=\frac{7}{3}.</math> | ||
Version vom 14:19, 25. Sep. 2008
We write the argument of \displaystyle \log _{3} as a power of \displaystyle \text{3},
\displaystyle 9\centerdot 3^{{1}/{3}\;}=3^{2}\centerdot 3^{{1}/{3}\;}=3^{2+\frac{1}{3}}=3^{\frac{7}{3}}
and then simplify the expression with the logarithm laws:
  
\displaystyle \log _{3}\left( 9\centerdot 3^{{1}/{3}\;} \right)=\log _{3}3^{\frac{7}{3}}=\frac{7}{3}\centerdot \log _{3}3=\frac{7}{3}\centerdot 1=\frac{7}{3}.
 
		  