Lösung 3.3:3d
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 3.3:3d moved to Solution 3.3:3d: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | We write the argument of |
- | < | + | <math>\log _{3}</math> |
- | {{ | + | as a power of |
+ | <math>\text{3}</math>, | ||
+ | |||
+ | |||
+ | <math>9\centerdot 3^{{1}/{3}\;}=3^{2}\centerdot 3^{{1}/{3}\;}=3^{2+\frac{1}{3}}=3^{\frac{7}{3}}</math> | ||
+ | |||
+ | |||
+ | and then simplify the expression with the logarithm laws: | ||
+ | |||
+ | |||
+ | <math>\log _{3}\left( 9\centerdot 3^{{1}/{3}\;} \right)=\log _{3}3^{\frac{7}{3}}=\frac{7}{3}\centerdot \log _{3}3=\frac{7}{3}\centerdot 1=\frac{7}{3}.</math> |
Version vom 14:19, 25. Sep. 2008
We write the argument of \displaystyle \log _{3} as a power of \displaystyle \text{3},
\displaystyle 9\centerdot 3^{{1}/{3}\;}=3^{2}\centerdot 3^{{1}/{3}\;}=3^{2+\frac{1}{3}}=3^{\frac{7}{3}}
and then simplify the expression with the logarithm laws:
\displaystyle \log _{3}\left( 9\centerdot 3^{{1}/{3}\;} \right)=\log _{3}3^{\frac{7}{3}}=\frac{7}{3}\centerdot \log _{3}3=\frac{7}{3}\centerdot 1=\frac{7}{3}.