Lösung 3.3:3c
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 3.3:3c moved to Solution 3.3:3c: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | First, we rewrite the number |
- | < | + | <math>0.\text{125 }</math> |
- | {{ | + | as a fraction which we also simplify: |
+ | |||
+ | |||
+ | <math>0.\text{125 }=\frac{\text{125 }}{1000}=\frac{5\centerdot 25}{10^{3}}=\frac{5\centerdot 5\centerdot 5}{\left( 2\centerdot 5 \right)^{3}}=\frac{1}{2^{3}}=2^{-3}</math> | ||
+ | |||
+ | |||
+ | Because | ||
+ | <math>0.\text{125 }</math> | ||
+ | was expressed as a power of | ||
+ | <math>\text{2}</math>, the logarithm can be calculated in full: | ||
+ | |||
+ | |||
+ | <math>\log _{2}0.\text{125 }=\log _{2}2^{-3}=\left( -3 \right)\centerdot \log _{2}2=\left( -3 \right)\centerdot 1=-3</math> |
Version vom 14:13, 25. Sep. 2008
First, we rewrite the number \displaystyle 0.\text{125 } as a fraction which we also simplify:
\displaystyle 0.\text{125 }=\frac{\text{125 }}{1000}=\frac{5\centerdot 25}{10^{3}}=\frac{5\centerdot 5\centerdot 5}{\left( 2\centerdot 5 \right)^{3}}=\frac{1}{2^{3}}=2^{-3}
Because
\displaystyle 0.\text{125 }
was expressed as a power of
\displaystyle \text{2}, the logarithm can be calculated in full:
\displaystyle \log _{2}0.\text{125 }=\log _{2}2^{-3}=\left( -3 \right)\centerdot \log _{2}2=\left( -3 \right)\centerdot 1=-3