Lösung 2.1:8b
Aus Online Mathematik Brückenkurs 1
K (Lösning 2.1:8b moved to Solution 2.1:8b: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | The fraction consists of the numerator |
- | < | + | <math>\frac{3}{x}-\frac{1}{x}</math>, which we can directly simplify somewhat to give |
- | {{ | + | <math>\frac{3}{x}-\frac{1}{x}=\frac{3-1}{x}=\frac{2}{x}</math>, and the denominator |
+ | <math>\frac{1}{x-3}</math>. If we are to rewrite the fraction as an expression with a single fraction sign, we need | ||
+ | to augment the multiply the top and bottom of the whole fraction by | ||
+ | <math>x\left( x-3 \right)</math> | ||
+ | and then eliminate | ||
+ | <math>x</math> | ||
+ | and | ||
+ | <math>x-3</math>: | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \frac{\frac{3}{x}-\frac{1}{x}}{\frac{1}{x-3}}=\frac{\frac{2}{x}}{\frac{1}{x-3}}=\frac{\frac{2}{x}}{\frac{1}{x-3}}\centerdot \frac{x\left( x-3 \right)}{x\left( x-3 \right)} \\ | ||
+ | & \\ | ||
+ | & =\frac{\frac{2}{x}\centerdot x\left( x-3 \right)}{\frac{1}{x-3}\centerdot x\left( x-3 \right)}=\frac{2\left( x-3 \right)}{x} \\ | ||
+ | \end{align}</math> |
Version vom 10:20, 25. Sep. 2008
The fraction consists of the numerator \displaystyle \frac{3}{x}-\frac{1}{x}, which we can directly simplify somewhat to give \displaystyle \frac{3}{x}-\frac{1}{x}=\frac{3-1}{x}=\frac{2}{x}, and the denominator \displaystyle \frac{1}{x-3}. If we are to rewrite the fraction as an expression with a single fraction sign, we need to augment the multiply the top and bottom of the whole fraction by \displaystyle x\left( x-3 \right) and then eliminate \displaystyle x and \displaystyle x-3:
\displaystyle \begin{align}
& \frac{\frac{3}{x}-\frac{1}{x}}{\frac{1}{x-3}}=\frac{\frac{2}{x}}{\frac{1}{x-3}}=\frac{\frac{2}{x}}{\frac{1}{x-3}}\centerdot \frac{x\left( x-3 \right)}{x\left( x-3 \right)} \\
& \\
& =\frac{\frac{2}{x}\centerdot x\left( x-3 \right)}{\frac{1}{x-3}\centerdot x\left( x-3 \right)}=\frac{2\left( x-3 \right)}{x} \\
\end{align}