Lösung 2.2:6b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
Because the point of intersection lies on both lines, it must satisfy the equations of both lines
Because the point of intersection lies on both lines, it must satisfy the equations of both lines
 +
{{Displayed math||<math>y=-x+5\qquad\text{and}\qquad x=0\,,</math>}}
-
<math>y=-x+5</math>
+
where <math>x=0</math> is the equation of the ''y''-axis. Substituting the second equation, <math>x=0</math>, into the first equation gives <math>y=-0+5=5</math>. This means that the point of intersection is (0,5).
-
and
+
-
<math>x=0</math>,
+
-
where
 
-
<math>x=0</math>
 
-
is the equation of the
 
-
<math>y</math>
 
-
-axis. Substituting the other equation,
 
-
<math>x=0</math>, into the first equation gives
 
-
<math>y=-0+5=5</math>. This means that the point of intersection is
 
-
<math>\left( 0 \right.,\left. 5 \right)</math>.
 
-
 
+
<center>[[Image:2_2_6_b.gif]]</center>
-
{{NAVCONTENT_START}}
+
-
[[Image:2_2_6_b.gif]]
+
-
 
+
-
{{NAVCONTENT_STOP}}
+

Version vom 13:04, 24. Sep. 2008

Because the point of intersection lies on both lines, it must satisfy the equations of both lines

Vorlage:Displayed math

where \displaystyle x=0 is the equation of the y-axis. Substituting the second equation, \displaystyle x=0, into the first equation gives \displaystyle y=-0+5=5. This means that the point of intersection is (0,5).


Image:2_2_6_b.gif