Lösung 2.2:1d
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
- | Move | + | Move ''x'' to the left-hand side by subtracting 2''x'' from both sides, |
- | + | ||
- | to the left-hand side by subtracting | + | |
- | + | ||
- | from both sides, | + | |
- | + | ||
- | + | ||
- | + | ||
+ | {{Displayed math||<math>5x+7-2x=2x-6-2x</math>}} | ||
which gives | which gives | ||
+ | {{Displayed math||<math>3x+7=-6\,\textrm{.}</math>}} | ||
- | + | Subtract 7 from both sides, | |
- | + | ||
- | + | ||
- | Subtract | + | |
- | + | ||
- | from both sides, | + | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
+ | {{Displayed math||<math>3x+7-7=-6-7</math>}} | ||
+ | so that the term 3''x'' alone remains on the left-hand side | ||
- | <math> | + | {{Displayed math||<math>3x=-13\,\textrm{.}</math>}} |
+ | Then, divide both sides by 3, | ||
- | + | {{Displayed math||<math>\frac{3x}{3}=-\frac{13}{3}\,\textrm{,}</math>}} | |
+ | to get x, | ||
- | <math>x=-\frac{13}{3}</math> | + | {{Displayed math||<math>x=-\frac{13}{3}\,\textrm{.}</math>}} |
Version vom 13:23, 23. Sep. 2008
Move x to the left-hand side by subtracting 2x from both sides,
which gives
Subtract 7 from both sides,
so that the term 3x alone remains on the left-hand side
Then, divide both sides by 3,
to get x,