Lösung 2.2:1c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
Because there is an
+
Because there is an ''x'' on both the left- and right-hand sides, the first step is to subtract ''x''/3 from both sides,
-
<math>x</math>
+
-
on both the left- and right-hand sides,
+
-
the first step is to subtract
+
{{Displayed math||<math>\tfrac{1}{3}x-1-\tfrac{1}{3}x=x-\tfrac{1}{3}x</math>}}
-
<math>{x}/{3}\;</math>
+
-
from both sides,
+
 +
so as to collect ''x'' on the right-hand side
-
<math>\frac{1}{3}x-1-\frac{1}{3}x=x-\frac{1}{3}x</math>
+
{{Displayed math||<math>-1=\tfrac{2}{3}x\,\textrm{.}</math>}}
 +
Then, multiply both sides by 3/2,
-
so as to collect
+
{{Displayed math||<math>\tfrac{3}{2}\cdot (-1) = \tfrac{3}{2}\cdot\tfrac{2}{3}x\,,</math>}}
-
<math>x</math>
+
-
on the right-hand side
+
 +
so that 2/3 can be eliminated on the right-hand side to give us
-
<math>-1=\frac{2}{3}x.</math>
+
{{Displayed math||<math>-\tfrac{3}{2}=x\,\textrm{.}</math>}}
-
 
+
-
 
+
-
Then, multiply both sides by
+
-
<math>{3}/{2}\;</math>,
+
-
 
+
-
 
+
-
<math>\frac{3}{2}\centerdot \left( -1 \right)=\frac{3}{2}\centerdot \frac{2}{3}x</math>
+
-
 
+
-
 
+
-
so that
+
-
<math>{2}/{3}\;</math>
+
-
can be eliminated on the right-hand side to give us
+
-
 
+
-
 
+
-
<math>-\frac{3}{2}=x</math>
+

Version vom 13:19, 23. Sep. 2008

Because there is an x on both the left- and right-hand sides, the first step is to subtract x/3 from both sides,

Vorlage:Displayed math

so as to collect x on the right-hand side

Vorlage:Displayed math

Then, multiply both sides by 3/2,

Vorlage:Displayed math

so that 2/3 can be eliminated on the right-hand side to give us

Vorlage:Displayed math