Lösung 3.2:3
Aus Online Mathematik Brückenkurs 1
K (Lösning 3.2:3 moved to Solution 3.2:3: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | First, we move the |
- | < | + | <math>\text{2}</math> |
- | {{ | + | to the right-hand side to get |
- | {{ | + | <math>\sqrt{3x-8}=x-2</math> |
- | < | + | and then square away the root sign, |
- | {{ | + | |
+ | (*) | ||
+ | <math>3x-8=\left( x-2 \right)^{2}</math> | ||
+ | |||
+ | |||
+ | or, with the right-hand side expanded | ||
+ | |||
+ | |||
+ | <math>3x-8=x^{2}-4x+4</math> | ||
+ | |||
+ | |||
+ | If we move over all the terms to the left-hand side, we get | ||
+ | |||
+ | |||
+ | <math>x^{2}-7x+12=0</math> | ||
+ | |||
+ | |||
+ | If we complete the square of the left-hand side, | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & x^{2}-7x+12=\left( x-\frac{7}{2} \right)^{2}-\left( \frac{7}{2} \right)^{2}+12 \\ | ||
+ | & =\left( x-\frac{7}{2} \right)^{2}-\frac{49}{4}+\frac{48}{4} \\ | ||
+ | & =\left( x-\frac{7}{2} \right)^{2}-\frac{1}{4} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | the equation can be written as | ||
+ | |||
+ | |||
+ | <math>\left( x-\frac{7}{2} \right)^{2}=\frac{1}{4}</math> | ||
+ | |||
+ | |||
+ | and the solutions are | ||
+ | |||
+ | |||
+ | <math>x=\frac{7}{2}+\sqrt{\frac{1}{4}}=\frac{7}{2}+\frac{1}{2}=\frac{8}{2}=4</math> | ||
+ | |||
+ | |||
+ | <math>x=\frac{7}{2}-\sqrt{\frac{1}{4}}=\frac{7}{2}-\frac{1}{2}=\frac{6}{2}=3</math> | ||
+ | |||
+ | To be on the safe side, we verify that | ||
+ | <math>x=\text{3 }</math> | ||
+ | and | ||
+ | <math>x=\text{4}</math> | ||
+ | satisfy the squared equation (*) | ||
+ | |||
+ | |||
+ | <math>x=\text{3 }</math>: LHS | ||
+ | <math>=3\centerdot 3-8=9-8=1</math> | ||
+ | and RHS | ||
+ | <math>=\left( 3-2 \right)^{2}=1</math> | ||
+ | |||
+ | |||
+ | <math>x=\text{4}</math>: LHS | ||
+ | <math>=3\centerdot 4-8=12-8=4</math> | ||
+ | and RHS | ||
+ | <math>=\left( 4\centerdot 2 \right)^{2}=4</math> | ||
+ | |||
+ | |||
+ | Because we squared the root equation, possible false roots turn up and we therefore have to verify the solutions when we go back to the original root equation: | ||
+ | |||
+ | |||
+ | <math>x=\text{3 }</math>: LHS | ||
+ | <math>=\sqrt{3\centerdot 3-8}+2=\sqrt{9-8}+2=1+2=3</math> | ||
+ | |||
+ | RHS | ||
+ | <math>=3</math> | ||
+ | |||
+ | |||
+ | <math>x=\text{4}</math>: LHS | ||
+ | <math>=\sqrt{3\centerdot 4-8}-2=\sqrt{12-8}-2=2+2=4</math> | ||
+ | |||
+ | RHS | ||
+ | <math>=4</math> | ||
+ | |||
+ | |||
+ | The solutions to the root equation are | ||
+ | <math>x=\text{3 }</math> | ||
+ | and | ||
+ | <math>x=\text{4}</math>. |
Version vom 13:15, 23. Sep. 2008
First, we move the \displaystyle \text{2} to the right-hand side to get \displaystyle \sqrt{3x-8}=x-2 and then square away the root sign,
(*) \displaystyle 3x-8=\left( x-2 \right)^{2}
or, with the right-hand side expanded
\displaystyle 3x-8=x^{2}-4x+4
If we move over all the terms to the left-hand side, we get
\displaystyle x^{2}-7x+12=0
If we complete the square of the left-hand side,
\displaystyle \begin{align}
& x^{2}-7x+12=\left( x-\frac{7}{2} \right)^{2}-\left( \frac{7}{2} \right)^{2}+12 \\
& =\left( x-\frac{7}{2} \right)^{2}-\frac{49}{4}+\frac{48}{4} \\
& =\left( x-\frac{7}{2} \right)^{2}-\frac{1}{4} \\
\end{align}
the equation can be written as
\displaystyle \left( x-\frac{7}{2} \right)^{2}=\frac{1}{4}
and the solutions are
\displaystyle x=\frac{7}{2}+\sqrt{\frac{1}{4}}=\frac{7}{2}+\frac{1}{2}=\frac{8}{2}=4
\displaystyle x=\frac{7}{2}-\sqrt{\frac{1}{4}}=\frac{7}{2}-\frac{1}{2}=\frac{6}{2}=3
To be on the safe side, we verify that \displaystyle x=\text{3 } and \displaystyle x=\text{4} satisfy the squared equation (*)
\displaystyle x=\text{3 }: LHS
\displaystyle =3\centerdot 3-8=9-8=1
and RHS
\displaystyle =\left( 3-2 \right)^{2}=1
\displaystyle x=\text{4}: LHS
\displaystyle =3\centerdot 4-8=12-8=4
and RHS
\displaystyle =\left( 4\centerdot 2 \right)^{2}=4
Because we squared the root equation, possible false roots turn up and we therefore have to verify the solutions when we go back to the original root equation:
\displaystyle x=\text{3 }: LHS
\displaystyle =\sqrt{3\centerdot 3-8}+2=\sqrt{9-8}+2=1+2=3
RHS \displaystyle =3
\displaystyle x=\text{4}: LHS
\displaystyle =\sqrt{3\centerdot 4-8}-2=\sqrt{12-8}-2=2+2=4
RHS \displaystyle =4
The solutions to the root equation are
\displaystyle x=\text{3 }
and
\displaystyle x=\text{4}.