Lösung 2.1:6d
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
First, we simplify the numerator and denominator for the whole fraction by rewriting as | First, we simplify the numerator and denominator for the whole fraction by rewriting as | ||
- | + | {{Displayed math||<math>\begin{align} | |
- | <math>\begin{align} | + | a-b+\frac{b^{2}}{a+b} |
- | + | &= (a-b)\cdot\frac{a+b}{a+b} + \frac{b^{2}}{a+b} = \frac{(a-b)\cdot (a+b)+b^{2}}{a+b}\\[5pt] | |
- | & \frac{a^{2}-b^{2}+b^{2}}{a+b}=\frac{a^{2}}{a+b} \\ | + | &= \frac{a^{2}-b^{2}+b^{2}}{a+b} = \frac{a^{2}}{a+b}\,,\\[15pt] |
- | \ | + | 1-\biggl(\frac{a-b}{a+b}\biggr)^{2} |
- | + | &= 1-\frac{(a-b)^{2}}{(a+b)^{2}} = \frac{(a+b)^{2}}{(a+b)^{2}} - \frac{(a-b)^{2}}{(a+b)^{2}}\\[5pt] | |
- | + | &= \frac{(a+b)^{2}-(a-b)^{2}}{(a+b)^{2}}\\[5pt] | |
- | + | &= \frac{(a^{2}+2ab+b^{2})-(a^{2}-2ab+b^{2})}{(a+b)^{2}} = \frac{4ab}{(a+b)^{2}}\,\textrm{.} | |
- | + | \end{align}</math>}} | |
- | + | ||
- | & =\frac{ | + | |
- | & =\frac{ | + | |
- | \end{align}</math> | + | |
- | + | ||
The whole fraction is therefore | The whole fraction is therefore | ||
- | + | {{Displayed math||<math>\frac{a-b+\dfrac{b^{2}}{a+b}}{1-\biggl(\dfrac{a-b}{a+b}\biggr)^{2}} = \frac{\dfrac{a^{2}}{a+b}}{\dfrac{4ab}{(a+b)^{2}}} = \frac{a^{2}}{a+b}\cdot\frac{(a+b)^{2}}{4ab} = \frac{a(a+b)}{4b}\,\textrm{.}</math>}} | |
- | <math>\frac{a-b+\ | + |
Version vom 11:49, 23. Sep. 2008
First, we simplify the numerator and denominator for the whole fraction by rewriting as
The whole fraction is therefore