Lösung 2.1:5b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
We can factorize the denominators as
We can factorize the denominators as
 +
{{Displayed math||<math>\begin{align}
 +
y^{2}-2y &= y(y-2)\\
 +
y^{2}-4 &= (y-2)(y+2)\quad\text{[difference of two squares]}
 +
\end{align}</math>}}
-
<math>y^{2}-2y=y\left( y-2 \right)</math>
+
and then we see that the terms' lowest common denominator is <math>y(y-2)(y+2)</math> because it is the product that contains the smallest number of factors which contain both <math>y(y-2)</math> and <math>(y-2)(y+2)</math>.
 +
Now, we rewrite the fractions so that they have same denominators and start simplifying
 +
{{Displayed math||<math>\begin{align}
 +
\frac{1}{y^{2}-2y}-\frac{2}{y^{2}-4}
 +
&= \frac{1}{y(y-2)}\cdot\frac{y+2}{y+2}-\frac{2}{(y-2)(y+2)}\cdot\frac{y}{y}\\[5pt]
 +
&= \frac{y+2}{y(y-2)(y+2)} - \frac{2y}{(y-2)(y+2)y}\\[5pt]
 +
&= \frac{y+2-2y}{y(y-2)(y+2)}\\[5pt]
 +
&= \frac{-y+2}{y(y-2)(y+2)}\,\textrm{.}
 +
\end{align}</math>}}
 +
The numerator can be rewritten as <math>-y+2=-(y-2)</math> and we can eliminate the common factor <math>y-2</math>,
-
<math>y^{2}-4=\left( y-2 \right)\left( y+2 \right)</math>
+
{{Displayed math||<math>\frac{-y+2}{y(y-2)(y+2)} = \frac{-(y-2)}{y(y-2)(y+2)} = \frac{-1}{y(y+2)} = -\frac{1}{y(y+2)}\,\textrm{.}</math>}}
-
[by the conjugate rule]
+
-
 
+
-
and then we see that the terms' lowest common denominator is
+
-
<math>y\left( y-2 \right)\left( y+2 \right)</math>
+
-
because it is the product that contains the smallest number of factors which contain both
+
-
<math>y\left( y-2 \right)</math>
+
-
and
+
-
<math>\left( y-2 \right)\left( y+2 \right)</math>
+
-
.
+
-
 
+
-
Now, we rewrite the fractions so that they have same denominators and start simplifying:
+
-
 
+
-
 
+
-
<math>\begin{align}
+
-
& y^{2}-4=\left( y-2 \right)\left( y+2 \right) \\
+
-
& y^{2}-2y=y\left( y-2 \right) \\
+
-
& \frac{1}{y^{2}-2y}-\frac{2}{y^{2}-4}=\frac{1}{y\left( y-2 \right)}\centerdot \frac{y+2}{y+2}-\frac{2}{\left( y-2 \right)\left( y+2 \right)}\centerdot \frac{y}{y} \\
+
-
& \\
+
-
& =\frac{y+2}{y\left( y-2 \right)\left( y+2 \right)}-\frac{2y}{\left( y-2 \right)\left( y+2 \right)y} \\
+
-
& \\
+
-
& =\frac{y+2-2y}{y\left( y-2 \right)\left( y+2 \right)}=\frac{-y+2}{y\left( y-2 \right)\left( y+2 \right)} \\
+
-
\end{align}</math>
+
-
 
+
-
 
+
-
The numerator can be rewritten as
+
-
<math>-y+2=-\left( y-2 \right)</math>
+
-
and we can eliminate the common factor
+
-
<math>y-2</math>
+
-
.
+
-
 
+
-
 
+
-
<math>\frac{-y+2}{y\left( y-2 \right)\left( y+2 \right)}=\frac{-\left( y-2 \right)}{y\left( y-2 \right)\left( y+2 \right)}=\frac{-1}{y\left( y+2 \right)}=-\frac{1}{y\left( y+2 \right)}</math>
+

Version vom 10:51, 23. Sep. 2008

We can factorize the denominators as

Vorlage:Displayed math

and then we see that the terms' lowest common denominator is \displaystyle y(y-2)(y+2) because it is the product that contains the smallest number of factors which contain both \displaystyle y(y-2) and \displaystyle (y-2)(y+2).

Now, we rewrite the fractions so that they have same denominators and start simplifying

Vorlage:Displayed math

The numerator can be rewritten as \displaystyle -y+2=-(y-2) and we can eliminate the common factor \displaystyle y-2,

Vorlage:Displayed math