Lösung 3.1:7b
Aus Online Mathematik Brückenkurs 1
| K  (Lösning 3.1:7b moved to Solution 3.1:7b: Robot: moved page) | |||
| Zeile 1: | Zeile 1: | ||
| - | {{ | + | We multiply the top and bottom of the fraction by the conjugate of the denominator,  | 
| - | < | + | <math>\sqrt{7}+\sqrt{5}</math> | 
| - | {{ | + | , and see what it leads to: | 
| + | |||
| + | |||
| + | <math>\begin{align} | ||
| + | & \frac{5\sqrt{7}-7\sqrt{5}}{\sqrt{7}-\sqrt{5}}\centerdot \frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}+\sqrt{5}}=\frac{\left( 5\sqrt{7}-7\sqrt{5} \right)\centerdot \left( \sqrt{7}+\sqrt{5} \right)}{\left( \sqrt{7} \right)^{2}-\left( \sqrt{5} \right)^{2}} \\  | ||
| + | & =\frac{5\sqrt{7}\centerdot \sqrt{7}+5\sqrt{5}\centerdot \sqrt{7}-7\sqrt{5}\centerdot \sqrt{7}-7\sqrt{5}\centerdot \sqrt{5}}{7-5} \\  | ||
| + | & =\frac{5\left( \sqrt{7} \right)^{2}+5\sqrt{5}\sqrt{7}-7\sqrt{5}\sqrt{7}-7\left( \sqrt{5} \right)^{2}}{2} \\  | ||
| + | & =\frac{5\centerdot 7+5\sqrt{5}\sqrt{7}-7\sqrt{5}\sqrt{7}-7\centerdot 5}{2} \\  | ||
| + | & =\frac{5\sqrt{5}\sqrt{7}-7\sqrt{5}\sqrt{7}}{2}=\frac{\left( 5-7 \right)\sqrt{5}\sqrt{7}}{2}=\frac{-2\sqrt{5}\sqrt{7}}{2} \\  | ||
| + | & =-\sqrt{35} \\  | ||
| + | \end{align}</math> | ||
Version vom 10:15, 23. Sep. 2008
We multiply the top and bottom of the fraction by the conjugate of the denominator, \displaystyle \sqrt{7}+\sqrt{5} , and see what it leads to:
\displaystyle \begin{align}
& \frac{5\sqrt{7}-7\sqrt{5}}{\sqrt{7}-\sqrt{5}}\centerdot \frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}+\sqrt{5}}=\frac{\left( 5\sqrt{7}-7\sqrt{5} \right)\centerdot \left( \sqrt{7}+\sqrt{5} \right)}{\left( \sqrt{7} \right)^{2}-\left( \sqrt{5} \right)^{2}} \\ 
& =\frac{5\sqrt{7}\centerdot \sqrt{7}+5\sqrt{5}\centerdot \sqrt{7}-7\sqrt{5}\centerdot \sqrt{7}-7\sqrt{5}\centerdot \sqrt{5}}{7-5} \\ 
& =\frac{5\left( \sqrt{7} \right)^{2}+5\sqrt{5}\sqrt{7}-7\sqrt{5}\sqrt{7}-7\left( \sqrt{5} \right)^{2}}{2} \\ 
& =\frac{5\centerdot 7+5\sqrt{5}\sqrt{7}-7\sqrt{5}\sqrt{7}-7\centerdot 5}{2} \\ 
& =\frac{5\sqrt{5}\sqrt{7}-7\sqrt{5}\sqrt{7}}{2}=\frac{\left( 5-7 \right)\sqrt{5}\sqrt{7}}{2}=\frac{-2\sqrt{5}\sqrt{7}}{2} \\ 
& =-\sqrt{35} \\ 
\end{align}
 
		  