Lösung 2.1:2b
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 2.1:2b moved to Solution 2.1:2b: Robot: moved page) |
K |
||
Zeile 1: | Zeile 1: | ||
- | {{NAVCONTENT_START}} | ||
- | <!--center> [[Image:2_1_2b.gif]] </center--> | ||
We expand the first product of bracketed terms by multiplying each term inside the first bracket by each term from the second bracket | We expand the first product of bracketed terms by multiplying each term inside the first bracket by each term from the second bracket | ||
- | <math> | + | {{Displayed math||<math>\begin{align} |
- | + | ||
- | \begin{align} | + | |
(1-5x)(1+15x) &= 1\cdot 1+1\cdot 15x-5x\cdot 1-5x \cdot 15x\\ | (1-5x)(1+15x) &= 1\cdot 1+1\cdot 15x-5x\cdot 1-5x \cdot 15x\\ | ||
- | &=1+15x-5x-75x^2 | + | &=1+15x-5x-75x^2\\ |
- | \end{align} | + | &=1+10x-75x^2\,\textrm{.} |
- | </math> | + | \end{align}</math>}} |
- | As for the second expression, we can use the conjugate rule <math>(a-b)(a+b)=a^2-b^2,</math> where <math>a=2</math> and <math> b=5x | + | As for the second expression, we can use the conjugate rule <math>(a-b)(a+b)=a^2-b^2,</math> where <math>a=2</math> and <math> b=5x</math>, |
- | <math> | + | {{Displayed math||<math>\begin{align} |
- | + | ||
- | \begin{align} | + | |
3(2-5x)(2+5x) &= 3\big( 2^2-(5x)^2\big)\\ | 3(2-5x)(2+5x) &= 3\big( 2^2-(5x)^2\big)\\ | ||
&=3(4-25x^2)\\ | &=3(4-25x^2)\\ | ||
- | &=12-75x^2 | + | &=12-75x^2\,\textrm{.} |
- | \end{align} | + | \end{align}</math>}} |
- | </math> | + | |
All together, we obtain | All together, we obtain | ||
- | <math> \ | + | {{Displayed math||<math>\begin{align} |
- | + | (1-5x)(1+15x)-3(2-5x)(2+5x) &= (1+10x-75x^2)-(12-75x^2)\\ | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
&= 1+10x-75x^2-12+75x^2\\ | &= 1+10x-75x^2-12+75x^2\\ | ||
&= 1-12+10x-75x^2+75x^2\\ | &= 1-12+10x-75x^2+75x^2\\ | ||
- | &=-11+10x | + | &=-11+10x\,\textrm{.} |
- | \end{align} | + | \end{align}</math>}} |
- | </math> | + | |
- | + | ||
- | + |
Version vom 08:15, 23. Sep. 2008
We expand the first product of bracketed terms by multiplying each term inside the first bracket by each term from the second bracket
As for the second expression, we can use the conjugate rule \displaystyle (a-b)(a+b)=a^2-b^2, where \displaystyle a=2 and \displaystyle b=5x,
All together, we obtain