Lösung 2.1:2a
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 2.1:2a moved to Solution 2.1:2a: Robot: moved page) |
K |
||
Zeile 1: | Zeile 1: | ||
- | {{NAVCONTENT_START}} | ||
- | <!--center> [[Image:2_1_2a.gif]] </center--> | ||
First, multiply the brackets together. In the first product, every term in the first bracket is multiplied by every term in the second bracket, | First, multiply the brackets together. In the first product, every term in the first bracket is multiplied by every term in the second bracket, | ||
- | <math> | + | {{Displayed math||<math>\begin{align} |
- | + | ||
- | \begin{align} | + | |
(x-4)(x-5)-3x(2x-3)&= x\cdot x-x\cdot 5- 4\cdot x-4\cdot (-5)-(3x \cdot 2x-3x\cdot 3)\\ | (x-4)(x-5)-3x(2x-3)&= x\cdot x-x\cdot 5- 4\cdot x-4\cdot (-5)-(3x \cdot 2x-3x\cdot 3)\\ | ||
&= x^2-5x-4x+20-(6x^2-9x)\\ | &= x^2-5x-4x+20-(6x^2-9x)\\ | ||
- | &=x^2-5x-4x+20-6x^2+9x | + | &=x^2-5x-4x+20-6x^2+9x\,\textrm{.} |
- | \end{align} | + | \end{align}</math>}} |
- | </math> | + | |
- | Then, gather together | + | Then, gather together ''x''²-, ''x''- and the constant terms and simplify |
- | <math> | + | {{Displayed math||<math>\begin{align} |
- | + | ||
- | \begin{align} | + | |
\phantom{(x-4)(x-5)-3x(2x-3)}&= (x^2-6x^2)+(-5x-4x+9x)+20 \\ | \phantom{(x-4)(x-5)-3x(2x-3)}&= (x^2-6x^2)+(-5x-4x+9x)+20 \\ | ||
&= -5x^2+0+20\\ | &= -5x^2+0+20\\ | ||
- | &= -5x^2+20 | + | &= \rlap{-5x^2+20\,\textrm{.}}\phantom{x\cdot x-x\cdot 5- 4\cdot x-4\cdot (-5)-(3x \cdot 2x-3x\cdot 3)} |
- | \end{align} | + | \end{align}</math>}} |
- | </math> | + | |
- | + | ||
- | + |
Version vom 08:10, 23. Sep. 2008
First, multiply the brackets together. In the first product, every term in the first bracket is multiplied by every term in the second bracket,
Then, gather together x²-, x- and the constant terms and simplify