Lösung 3.1:4d

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 3.1:4d moved to Solution 3.1:4d: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
We start by factorizing the numbers under the root sign,
-
<center> [[Image:3_1_4d.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
 +
<math>\begin{align}
 +
& 48=2\centerdot 24=2\centerdot 2\centerdot 12=2\centerdot 2\centerdot 2\centerdot 6=2\centerdot 2\centerdot 2\centerdot 2\centerdot 3=2^{4}\centerdot 3, \\
 +
& 12=2\centerdot 6=2\centerdot 2\centerdot 3=2^{2}\centerdot 3, \\
 +
& 3=3, \\
 +
& 75=3\centerdot 25=3\centerdot 5\centerdot 5=3\centerdot 5^{2} \\
 +
\end{align}</math>
 +
 
 +
Now, we can take the squares out from under the root signs,
 +
 
 +
 
 +
<math>\begin{align}
 +
& \sqrt{48}=\sqrt{2^{4}\centerdot 3}=2^{2}\sqrt{3}=4\sqrt{3} \\
 +
& \sqrt{12}=\sqrt{2^{2}\centerdot 3}=2\sqrt{3} \\
 +
& \sqrt{3}=\sqrt{3} \\
 +
& \sqrt{75}=\sqrt{3\centerdot 5^{2}}=5\sqrt{3} \\
 +
\end{align}</math>
 +
 
 +
 
 +
and then simplify the whole expression:
 +
 
 +
 
 +
<math>\begin{align}
 +
& \sqrt{48}+\sqrt{12}+\sqrt{3}-\sqrt{75}=4\sqrt{3}+2\sqrt{3}+\sqrt{3}-5\sqrt{3} \\
 +
& =\left( 4+2+1-5 \right)\sqrt{3}=2\sqrt{3} \\
 +
\end{align}</math>

Version vom 14:20, 22. Sep. 2008

We start by factorizing the numbers under the root sign,


\displaystyle \begin{align} & 48=2\centerdot 24=2\centerdot 2\centerdot 12=2\centerdot 2\centerdot 2\centerdot 6=2\centerdot 2\centerdot 2\centerdot 2\centerdot 3=2^{4}\centerdot 3, \\ & 12=2\centerdot 6=2\centerdot 2\centerdot 3=2^{2}\centerdot 3, \\ & 3=3, \\ & 75=3\centerdot 25=3\centerdot 5\centerdot 5=3\centerdot 5^{2} \\ \end{align}

Now, we can take the squares out from under the root signs,


\displaystyle \begin{align} & \sqrt{48}=\sqrt{2^{4}\centerdot 3}=2^{2}\sqrt{3}=4\sqrt{3} \\ & \sqrt{12}=\sqrt{2^{2}\centerdot 3}=2\sqrt{3} \\ & \sqrt{3}=\sqrt{3} \\ & \sqrt{75}=\sqrt{3\centerdot 5^{2}}=5\sqrt{3} \\ \end{align}


and then simplify the whole expression:


\displaystyle \begin{align} & \sqrt{48}+\sqrt{12}+\sqrt{3}-\sqrt{75}=4\sqrt{3}+2\sqrt{3}+\sqrt{3}-5\sqrt{3} \\ & =\left( 4+2+1-5 \right)\sqrt{3}=2\sqrt{3} \\ \end{align}