Lösung 3.1:4d
Aus Online Mathematik Brückenkurs 1
K (Lösning 3.1:4d moved to Solution 3.1:4d: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | We start by factorizing the numbers under the root sign, |
- | < | + | |
- | {{ | + | |
+ | <math>\begin{align} | ||
+ | & 48=2\centerdot 24=2\centerdot 2\centerdot 12=2\centerdot 2\centerdot 2\centerdot 6=2\centerdot 2\centerdot 2\centerdot 2\centerdot 3=2^{4}\centerdot 3, \\ | ||
+ | & 12=2\centerdot 6=2\centerdot 2\centerdot 3=2^{2}\centerdot 3, \\ | ||
+ | & 3=3, \\ | ||
+ | & 75=3\centerdot 25=3\centerdot 5\centerdot 5=3\centerdot 5^{2} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | Now, we can take the squares out from under the root signs, | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \sqrt{48}=\sqrt{2^{4}\centerdot 3}=2^{2}\sqrt{3}=4\sqrt{3} \\ | ||
+ | & \sqrt{12}=\sqrt{2^{2}\centerdot 3}=2\sqrt{3} \\ | ||
+ | & \sqrt{3}=\sqrt{3} \\ | ||
+ | & \sqrt{75}=\sqrt{3\centerdot 5^{2}}=5\sqrt{3} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | and then simplify the whole expression: | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \sqrt{48}+\sqrt{12}+\sqrt{3}-\sqrt{75}=4\sqrt{3}+2\sqrt{3}+\sqrt{3}-5\sqrt{3} \\ | ||
+ | & =\left( 4+2+1-5 \right)\sqrt{3}=2\sqrt{3} \\ | ||
+ | \end{align}</math> |
Version vom 14:20, 22. Sep. 2008
We start by factorizing the numbers under the root sign,
\displaystyle \begin{align}
& 48=2\centerdot 24=2\centerdot 2\centerdot 12=2\centerdot 2\centerdot 2\centerdot 6=2\centerdot 2\centerdot 2\centerdot 2\centerdot 3=2^{4}\centerdot 3, \\
& 12=2\centerdot 6=2\centerdot 2\centerdot 3=2^{2}\centerdot 3, \\
& 3=3, \\
& 75=3\centerdot 25=3\centerdot 5\centerdot 5=3\centerdot 5^{2} \\
\end{align}
Now, we can take the squares out from under the root signs,
\displaystyle \begin{align}
& \sqrt{48}=\sqrt{2^{4}\centerdot 3}=2^{2}\sqrt{3}=4\sqrt{3} \\
& \sqrt{12}=\sqrt{2^{2}\centerdot 3}=2\sqrt{3} \\
& \sqrt{3}=\sqrt{3} \\
& \sqrt{75}=\sqrt{3\centerdot 5^{2}}=5\sqrt{3} \\
\end{align}
and then simplify the whole expression:
\displaystyle \begin{align}
& \sqrt{48}+\sqrt{12}+\sqrt{3}-\sqrt{75}=4\sqrt{3}+2\sqrt{3}+\sqrt{3}-5\sqrt{3} \\
& =\left( 4+2+1-5 \right)\sqrt{3}=2\sqrt{3} \\
\end{align}