Lösung 1.3:4c
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
			  			                                                      
		          
			K   | 
			|||
| Zeile 1: | Zeile 1: | ||
| - | The whole expression consists of factors having a base of   | + | The whole expression consists of factors having a base of 5 so the power rules can be used to simplify the expression first  | 
| - | + | ||
| - | + | {{Displayed math||<math>\begin{align}  | |
| - | + | \frac{5^{12}}{5^{-4}}\cdot \bigl( 5^{2} \bigr)^{-6}  | |
| - | + | &= \frac{5^{12}}{5^{-4}}\cdot 5^{2\cdot (-6)}\\[3pt]  | |
| - | + | &= \frac{5^{12}}{5^{-4}}\cdot 5^{-12}\\[3pt]  | |
| - | <math>\begin{align}  | + | &= \frac{5^{12}\cdot 5^{-12}}{5^{-4}}\\[3pt]  | 
| - | + | &= \frac{5^{12-12}}{5^{-4}}\\[3pt]  | |
| - | + | &= \frac{5^{0}}{5^{-4}}\\[3pt]  | |
| - | & =\frac{5^{12-12}}{5^{-4}}=\frac{5^{0}}{5^{-4}}=5^{0-  | + | &= 5^{0-(-4)}\\[3pt]  | 
| - | \end{align}</math>  | + | &= 5^{4}\\[3pt]  | 
| + | &= 5\cdot 5\cdot 5\cdot 5\\[3pt]  | ||
| + | &= 625\,\textrm{.}   | ||
| + | \end{align}</math>}}  | ||
Version vom 14:05, 22. Sep. 2008
The whole expression consists of factors having a base of 5 so the power rules can be used to simplify the expression first
