Lösung 3.1:3c
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 3.1:3c moved to Solution 3.1:3c: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | We start by looking at the one part of the expression, |
- | < | + | <math>\sqrt{16}</math>. This root can be simplified since |
- | {{ | + | <math>16=4\centerdot 4=4^{2}</math> |
+ | which gives that | ||
+ | <math>\sqrt{16}=\sqrt{4^{2}}=4</math> | ||
+ | and the whole expression becomes | ||
+ | |||
+ | |||
+ | <math>\sqrt{16+\sqrt{16}}=\sqrt{16+4}=\sqrt{20}</math> | ||
+ | |||
+ | |||
+ | Can | ||
+ | <math>\sqrt{20}</math> | ||
+ | be simplified? In order to answer this, we split | ||
+ | <math>\text{2}0</math> | ||
+ | up into integer factors, | ||
+ | |||
+ | |||
+ | <math>20=2\centerdot 10=2\centerdot 2\centerdot 5=2^{2}\centerdot 5</math> | ||
+ | |||
+ | |||
+ | and see that | ||
+ | <math>\text{2}0\text{ }</math> | ||
+ | contains the square | ||
+ | <math>\text{2}^{\text{2}}</math> | ||
+ | as a factor and can therefore be taken outside the root sign, | ||
+ | |||
+ | |||
+ | <math>\sqrt{20}=\sqrt{2^{2}\centerdot 5}^{2}=2\sqrt{5}</math> |
Version vom 12:59, 22. Sep. 2008
We start by looking at the one part of the expression, \displaystyle \sqrt{16}. This root can be simplified since \displaystyle 16=4\centerdot 4=4^{2} which gives that \displaystyle \sqrt{16}=\sqrt{4^{2}}=4 and the whole expression becomes
\displaystyle \sqrt{16+\sqrt{16}}=\sqrt{16+4}=\sqrt{20}
Can
\displaystyle \sqrt{20}
be simplified? In order to answer this, we split
\displaystyle \text{2}0
up into integer factors,
\displaystyle 20=2\centerdot 10=2\centerdot 2\centerdot 5=2^{2}\centerdot 5
and see that
\displaystyle \text{2}0\text{ }
contains the square
\displaystyle \text{2}^{\text{2}}
as a factor and can therefore be taken outside the root sign,
\displaystyle \sqrt{20}=\sqrt{2^{2}\centerdot 5}^{2}=2\sqrt{5}