Lösung 1.2:5c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K
Zeile 12: Zeile 12:
{{Displayed math||<math>\frac{\,\dfrac{3}{10}-\dfrac{1}{5}\vphantom{\Biggl(}\,}{\,\dfrac{7}{8}-\dfrac{3}{16}\vphantom{\Biggl(}\,} = \frac{\,\dfrac{1}{10}\vphantom{\Biggl(}\,}{\,\dfrac{11}{16}\vphantom{\Biggl(}\,} = \frac{\,\dfrac{1}{10}\cdot \dfrac{16}{11}\vphantom{\Biggl(}\,}{\,\dfrac{\rlap{\,/}11}{\rlap{\,/}16}\cdot \dfrac{\rlap{\,/}16}{\rlap{\,/}11}\vphantom{\Biggl(}\,} = \dfrac{16}{10\cdot 11}</math>}}
{{Displayed math||<math>\frac{\,\dfrac{3}{10}-\dfrac{1}{5}\vphantom{\Biggl(}\,}{\,\dfrac{7}{8}-\dfrac{3}{16}\vphantom{\Biggl(}\,} = \frac{\,\dfrac{1}{10}\vphantom{\Biggl(}\,}{\,\dfrac{11}{16}\vphantom{\Biggl(}\,} = \frac{\,\dfrac{1}{10}\cdot \dfrac{16}{11}\vphantom{\Biggl(}\,}{\,\dfrac{\rlap{\,/}11}{\rlap{\,/}16}\cdot \dfrac{\rlap{\,/}16}{\rlap{\,/}11}\vphantom{\Biggl(}\,} = \dfrac{16}{10\cdot 11}</math>}}
-
and because <math>16=2\cdot 2\cdot 2\cdot 2</math> and <math>10=2\centerdot 5</math>, the simplified answer is
+
and because <math>16=2\cdot 2\cdot 2\cdot 2</math> and <math>10=2\cdot 5</math>, the simplified answer is
{{Displayed math||<math>\frac{16}{10\cdot 11} = \frac{\rlap{/}2\cdot 2\cdot 2\cdot 2}{\rlap{/}2\cdot 5\cdot 11} = \frac{8}{55}\,</math>.}}
{{Displayed math||<math>\frac{16}{10\cdot 11} = \frac{\rlap{/}2\cdot 2\cdot 2\cdot 2}{\rlap{/}2\cdot 5\cdot 11} = \frac{8}{55}\,</math>.}}

Version vom 12:34, 22. Sep. 2008

Method 1

We calculate the numerator and denominator first

Vorlage:Displayed math

Thus, the expression becomes

Vorlage:Displayed math

and because \displaystyle 16=2\cdot 2\cdot 2\cdot 2 and \displaystyle 10=2\cdot 5, the simplified answer is

Vorlage:Displayed math

Method 2

If we look at the individual fractions 3/10, 1/5, 7/8 and 3/16, we see that the denominators can be factorized as

Vorlage:Displayed math

and therefore 2∙2∙2∙2∙5 = 80 is the fractions' lowest common denominator.

If we multiply the top and bottom of the main fraction by 80, then it will be possible to eliminate all denominators at once,

Vorlage:Displayed math