Lösung 1.2:2c
Aus Online Mathematik Brückenkurs 1
K (Lösning 1.2:2c moved to Solution 1.2:2c: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | We divide up the two numerators into the smallest possible integer factors, |
- | < | + | |
- | {{ | + | |
+ | <math>\begin{align} | ||
+ | & 12=2\centerdot 6=2\centerdot 2\centerdot 3 \\ | ||
+ | & 14=2\centerdot 7 \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | The expression can thus be written as | ||
+ | |||
+ | |||
+ | <math>\frac{1}{2\centerdot 2\centerdot 3}-\frac{1}{2\centerdot 7}</math> | ||
+ | |||
+ | Here, we see that the denominators have a factor | ||
+ | <math>2</math> | ||
+ | in common. We multiply the top and bottom of the first fraction by | ||
+ | <math>7</math> | ||
+ | and the second by | ||
+ | <math>2\centerdot 3</math> | ||
+ | i.e. we leave out the common factor | ||
+ | <math>2</math>, so that the fractions have the lowest common denominator | ||
+ | <math>2\centerdot 2\centerdot 3\centerdot 7</math>, | ||
+ | |||
+ | |||
+ | <math>\frac{1}{12}-\frac{1}{14}=\frac{1}{2\centerdot 2\centerdot 3}-\frac{1}{2\centerdot 7}=\frac{1}{2\centerdot 2\centerdot 3}\centerdot \frac{7}{7}-\frac{1}{2\centerdot 7}\centerdot \frac{2\centerdot 3}{2\centerdot 3}</math> | ||
+ | |||
+ | The lowest common denominator is | ||
+ | <math>84</math>. |
Version vom 09:39, 22. Sep. 2008
We divide up the two numerators into the smallest possible integer factors,
\displaystyle \begin{align}
& 12=2\centerdot 6=2\centerdot 2\centerdot 3 \\
& 14=2\centerdot 7 \\
\end{align}
The expression can thus be written as
\displaystyle \frac{1}{2\centerdot 2\centerdot 3}-\frac{1}{2\centerdot 7}
Here, we see that the denominators have a factor \displaystyle 2 in common. We multiply the top and bottom of the first fraction by \displaystyle 7 and the second by \displaystyle 2\centerdot 3 i.e. we leave out the common factor \displaystyle 2, so that the fractions have the lowest common denominator \displaystyle 2\centerdot 2\centerdot 3\centerdot 7,
\displaystyle \frac{1}{12}-\frac{1}{14}=\frac{1}{2\centerdot 2\centerdot 3}-\frac{1}{2\centerdot 7}=\frac{1}{2\centerdot 2\centerdot 3}\centerdot \frac{7}{7}-\frac{1}{2\centerdot 7}\centerdot \frac{2\centerdot 3}{2\centerdot 3}
The lowest common denominator is \displaystyle 84.