Lösung 1.2:2c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 1.2:2c moved to Solution 1.2:2c: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
We divide up the two numerators into the smallest possible integer factors,
-
<center> [[Image:1_2_2c.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
 +
<math>\begin{align}
 +
& 12=2\centerdot 6=2\centerdot 2\centerdot 3 \\
 +
& 14=2\centerdot 7 \\
 +
\end{align}</math>
 +
 
 +
The expression can thus be written as
 +
 
 +
 
 +
<math>\frac{1}{2\centerdot 2\centerdot 3}-\frac{1}{2\centerdot 7}</math>
 +
 
 +
Here, we see that the denominators have a factor
 +
<math>2</math>
 +
in common. We multiply the top and bottom of the first fraction by
 +
<math>7</math>
 +
and the second by
 +
<math>2\centerdot 3</math>
 +
i.e. we leave out the common factor
 +
<math>2</math>, so that the fractions have the lowest common denominator
 +
<math>2\centerdot 2\centerdot 3\centerdot 7</math>,
 +
 
 +
 
 +
<math>\frac{1}{12}-\frac{1}{14}=\frac{1}{2\centerdot 2\centerdot 3}-\frac{1}{2\centerdot 7}=\frac{1}{2\centerdot 2\centerdot 3}\centerdot \frac{7}{7}-\frac{1}{2\centerdot 7}\centerdot \frac{2\centerdot 3}{2\centerdot 3}</math>
 +
 
 +
The lowest common denominator is
 +
<math>84</math>.

Version vom 09:39, 22. Sep. 2008

We divide up the two numerators into the smallest possible integer factors,


\displaystyle \begin{align} & 12=2\centerdot 6=2\centerdot 2\centerdot 3 \\ & 14=2\centerdot 7 \\ \end{align}

The expression can thus be written as


\displaystyle \frac{1}{2\centerdot 2\centerdot 3}-\frac{1}{2\centerdot 7}

Here, we see that the denominators have a factor \displaystyle 2 in common. We multiply the top and bottom of the first fraction by \displaystyle 7 and the second by \displaystyle 2\centerdot 3 i.e. we leave out the common factor \displaystyle 2, so that the fractions have the lowest common denominator \displaystyle 2\centerdot 2\centerdot 3\centerdot 7,


\displaystyle \frac{1}{12}-\frac{1}{14}=\frac{1}{2\centerdot 2\centerdot 3}-\frac{1}{2\centerdot 7}=\frac{1}{2\centerdot 2\centerdot 3}\centerdot \frac{7}{7}-\frac{1}{2\centerdot 7}\centerdot \frac{2\centerdot 3}{2\centerdot 3}

The lowest common denominator is \displaystyle 84.