Lösung 1.1:5a
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 1.1:5a moved to Solution 1.1:5a: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | It is easier to see the mutual order of the numbers if we write them as decimals. |
- | < | + | |
- | {{ | + | Because we know that |
+ | <math>{1}/{5}\;=0.2</math> | ||
+ | and | ||
+ | <math>{1}/{3}\;=0.333...</math>, we obtain | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \frac{3}{5}=3\centerdot \frac{3}{5}=3.02=0.6 \\ | ||
+ | & \\ | ||
+ | & \frac{5}{3}=\frac{3+2}{3}=1+\frac{2}{3}=1.666... \\ | ||
+ | & \\ | ||
+ | & \frac{7}{3}=\frac{6+1}{3}=2+\frac{1}{3}=2.333... \\ | ||
+ | \end{align}</math> |
Version vom 09:10, 22. Sep. 2008
It is easier to see the mutual order of the numbers if we write them as decimals.
Because we know that \displaystyle {1}/{5}\;=0.2 and \displaystyle {1}/{3}\;=0.333..., we obtain
\displaystyle \begin{align}
& \frac{3}{5}=3\centerdot \frac{3}{5}=3.02=0.6 \\
& \\
& \frac{5}{3}=\frac{3+2}{3}=1+\frac{2}{3}=1.666... \\
& \\
& \frac{7}{3}=\frac{6+1}{3}=2+\frac{1}{3}=2.333... \\
\end{align}