Lösung 2.3:6c
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 2.3:6c moved to Solution 2.3:6c: Robot: moved page) |
|||
| Zeile 1: | Zeile 1: | ||
| - | {{ | + | If we complete the square of the expression, we have that |
| - | < | + | |
| - | {{ | + | |
| + | <math>\begin{align} | ||
| + | & x^{2}-5x+7=\left( x-\frac{5}{2} \right)^{2}-\left( \frac{5}{2} \right)^{2}+7 \\ | ||
| + | & =\left( x-\frac{5}{2} \right)^{2}-\frac{25}{4}+\frac{28}{4}=\left( x-\frac{5}{2} \right)^{2}+\frac{3}{4} \\ | ||
| + | \end{align}</math> | ||
| + | |||
| + | |||
| + | and because | ||
| + | <math>\left( x-\frac{5}{2} \right)^{2}</math> | ||
| + | is a quadratic, this term is at least equal to zero when | ||
| + | <math>x={5}/{2}\;</math>. This shows that the polynomial's smallest value is | ||
| + | <math>\frac{3}{4}</math>. | ||
Version vom 11:03, 21. Sep. 2008
If we complete the square of the expression, we have that
\displaystyle \begin{align}
& x^{2}-5x+7=\left( x-\frac{5}{2} \right)^{2}-\left( \frac{5}{2} \right)^{2}+7 \\
& =\left( x-\frac{5}{2} \right)^{2}-\frac{25}{4}+\frac{28}{4}=\left( x-\frac{5}{2} \right)^{2}+\frac{3}{4} \\
\end{align}
and because
\displaystyle \left( x-\frac{5}{2} \right)^{2}
is a quadratic, this term is at least equal to zero when
\displaystyle x={5}/{2}\;. This shows that the polynomial's smallest value is
\displaystyle \frac{3}{4}.
