Lösung 2.3:5b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 2.3:5b moved to Solution 2.3:5b: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
Instead of randomly trying different values of
-
<center> [[Image:2_3_5b.gif]] </center>
+
<math>x</math>
-
{{NAVCONTENT_STOP}}
+
, it is better investigate the second-degree expression by completing the square:
 +
 
 +
 
 +
<math>\begin{align}
 +
& 4x^{2}-28x+48=4\left( x^{2}-7x+12 \right)=4\left( \left( x-\frac{7}{2} \right)^{2}-\left( \frac{7}{2} \right)^{2}+12 \right) \\
 +
& =4\left( \left( x-\frac{7}{2} \right)^{2}-\frac{49}{4}+\frac{48}{4} \right)=4\left( \left( x-\frac{7}{2} \right)^{2}-\frac{1}{4} \right)=4\left( x-\frac{7}{2} \right)^{2}-1. \\
 +
\end{align}</math>
 +
 
 +
 
 +
In the expression in which the square has been completed, we see that if, e.g.
 +
<math>x={7}/{2}\;</math>, then the whole expression is negative and equal to
 +
<math>-\text{1}</math>.
 +
 
 +
NOTE: All values of
 +
<math>x</math>
 +
between
 +
<math>\text{3}</math>
 +
and
 +
<math>\text{4}</math>
 +
give a negative value for the expression.

Version vom 09:57, 21. Sep. 2008

Instead of randomly trying different values of \displaystyle x , it is better investigate the second-degree expression by completing the square:


\displaystyle \begin{align} & 4x^{2}-28x+48=4\left( x^{2}-7x+12 \right)=4\left( \left( x-\frac{7}{2} \right)^{2}-\left( \frac{7}{2} \right)^{2}+12 \right) \\ & =4\left( \left( x-\frac{7}{2} \right)^{2}-\frac{49}{4}+\frac{48}{4} \right)=4\left( \left( x-\frac{7}{2} \right)^{2}-\frac{1}{4} \right)=4\left( x-\frac{7}{2} \right)^{2}-1. \\ \end{align}


In the expression in which the square has been completed, we see that if, e.g. \displaystyle x={7}/{2}\;, then the whole expression is negative and equal to \displaystyle -\text{1}.

NOTE: All values of \displaystyle x between \displaystyle \text{3} and \displaystyle \text{4} give a negative value for the expression.