Lösung 2.3:4c
Aus Online Mathematik Brückenkurs 1
| K  (Lösning 2.3:4c moved to Solution 2.3:4c: Robot: moved page) | |||
| Zeile 1: | Zeile 1: | ||
| - | {{ | + | The equation  | 
| - | < | + | <math>\left( x-\text{3} \right)\left( x-\sqrt{\text{3}} \right)=0</math> | 
| - | {{ | + | is a second-degree equation which has  | 
| + | <math>x=\text{3 }</math> | ||
| + | and  | ||
| + | <math>x=\sqrt{\text{3}}</math> | ||
| + | as roots; when | ||
| + | <math>x=\text{3 }</math>, the first factor is zero and when  | ||
| + | <math>x=\sqrt{\text{3}}</math> | ||
| + | the second factor is zero. | ||
| + | |||
| + | If we expand the equations left-hand side, we get the equation in standard form, | ||
| + | |||
| + | |||
| + | <math>\begin{align} | ||
| + | & \left( x-\text{3} \right)\left( x-\sqrt{\text{3}} \right)=x^{2}-\sqrt{\text{3}}x-3x+3\sqrt{\text{3}} \\  | ||
| + | & =x^{2}-\left( 3+\sqrt{\text{3}} \right)x+3\sqrt{\text{3}}=0 \\  | ||
| + | \end{align}</math> | ||
| + | |||
| + | |||
| + | NOTE: the general answer is, | ||
| + | |||
| + | |||
| + | <math>ax^{2}-\left( 3+\sqrt{\text{3}} \right)ax+3\sqrt{\text{3}}a=0</math> | ||
| + | |||
| + | |||
| + | where  | ||
| + | <math>a\ne 0</math> | ||
| + | is a constant. | ||
Version vom 09:38, 21. Sep. 2008
The equation \displaystyle \left( x-\text{3} \right)\left( x-\sqrt{\text{3}} \right)=0 is a second-degree equation which has \displaystyle x=\text{3 } and \displaystyle x=\sqrt{\text{3}} as roots; when \displaystyle x=\text{3 }, the first factor is zero and when \displaystyle x=\sqrt{\text{3}} the second factor is zero.
If we expand the equations left-hand side, we get the equation in standard form,
\displaystyle \begin{align}
& \left( x-\text{3} \right)\left( x-\sqrt{\text{3}} \right)=x^{2}-\sqrt{\text{3}}x-3x+3\sqrt{\text{3}} \\ 
& =x^{2}-\left( 3+\sqrt{\text{3}} \right)x+3\sqrt{\text{3}}=0 \\ 
\end{align}
NOTE: the general answer is,
\displaystyle ax^{2}-\left( 3+\sqrt{\text{3}} \right)ax+3\sqrt{\text{3}}a=0
where 
\displaystyle a\ne 0
is a constant.
 
		  