Lösung 2.3:3e

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 2.3:3e moved to Solution 2.3:3e: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
In this case, we see that the left-hand side contains the factor
-
<center> [[Image:2_3_3e.gif]] </center>
+
<math>x+\text{3}</math>, which we can take out to obtain
-
{{NAVCONTENT_STOP}}
+
 
 +
 
 +
<math>\begin{align}
 +
& \left( x+\text{3} \right)\left( x-1 \right)-\left( x+\text{3} \right)\left( 2x-9 \right)=\left( x+\text{3} \right)\left( \left( x-1 \right)-\left( 2x-9 \right) \right) \\
 +
& =\left( x+\text{3} \right)\left( x-1-2x+9 \right)=\left( x+\text{3} \right)\left( -x+8 \right). \\
 +
\end{align}</math>
 +
 
 +
 
 +
This rewriting of the equation results in the new equation
 +
 
 +
 
 +
<math>\left( x+\text{3} \right)\left( -x+8 \right)=0</math>
 +
 
 +
 
 +
which has the solutions
 +
<math>x=-\text{3}</math>
 +
and
 +
<math>x=\text{8}</math>.
 +
 
 +
We check the solution
 +
<math>x=\text{8 }</math>
 +
by substituting it into the equation:
 +
 
 +
LHS
 +
<math>=\left( 8+3 \right)\centerdot \left( 8-1 \right)-\left( 8+3 \right)\centerdot \left( 2\centerdot 8-9 \right)=11\centerdot 7-11\centerdot 7=0=</math>
 +
RHS

Version vom 15:14, 20. Sep. 2008

In this case, we see that the left-hand side contains the factor \displaystyle x+\text{3}, which we can take out to obtain


\displaystyle \begin{align} & \left( x+\text{3} \right)\left( x-1 \right)-\left( x+\text{3} \right)\left( 2x-9 \right)=\left( x+\text{3} \right)\left( \left( x-1 \right)-\left( 2x-9 \right) \right) \\ & =\left( x+\text{3} \right)\left( x-1-2x+9 \right)=\left( x+\text{3} \right)\left( -x+8 \right). \\ \end{align}


This rewriting of the equation results in the new equation


\displaystyle \left( x+\text{3} \right)\left( -x+8 \right)=0


which has the solutions \displaystyle x=-\text{3} and \displaystyle x=\text{8}.

We check the solution \displaystyle x=\text{8 } by substituting it into the equation:

LHS \displaystyle =\left( 8+3 \right)\centerdot \left( 8-1 \right)-\left( 8+3 \right)\centerdot \left( 2\centerdot 8-9 \right)=11\centerdot 7-11\centerdot 7=0= RHS