Lösung 2.3:2f

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 2.3:2f moved to Solution 2.3:2f: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
We divide both sides by
-
<center> [[Image:2_3_2f.gif]] </center>
+
<math>3</math>
-
{{NAVCONTENT_STOP}}
+
and complete the square on the left-hand side:
 +
 
 +
 
 +
<math>\begin{align}
 +
& x^{2}-\frac{10}{3}x+\frac{8}{3}=\left( x-\frac{5}{3} \right)^{2}-\left( -\frac{5}{3} \right)^{2}+\frac{8}{3}=\left( x-\frac{5}{3} \right)^{2}-\frac{25}{9}+\frac{24}{9} \\
 +
& =\left( x-\frac{5}{3} \right)^{2}-\frac{1}{9} \\
 +
\end{align}</math>
 +
 
 +
 
 +
The equation then becomes
 +
 
 +
 
 +
<math>\left( x-\frac{5}{3} \right)^{2}=\frac{1}{9}</math>
 +
 
 +
and taking the root gives the solutions as
 +
 
 +
 
 +
<math>x-\frac{5}{3}=\sqrt{\frac{1}{9}}=\frac{1}{3}</math>
 +
i.e.
 +
<math>x=\frac{5}{3}+\frac{1}{3}=\frac{6}{3}=2.</math>
 +
 
 +
 
 +
<math>x-\frac{5}{3}=-\sqrt{\frac{1}{9}}=-\frac{1}{3}</math>
 +
i.e.
 +
<math>x=\frac{5}{3}-\frac{1}{3}=\frac{4}{3}.</math>
 +
 
 +
 
 +
Check:
 +
 
 +
 
 +
<math>x=\text{4}/\text{3}</math>: LHS
 +
<math>=3\centerdot \left( \frac{4}{3} \right)^{2}-10\centerdot \frac{4}{3}+8=3\centerdot \frac{16}{9}-\frac{40}{3}+\frac{8\centerdot 3}{3}=\frac{16-40+24}{3}=0=</math>
 +
RHS
 +
 
 +
<math>x=\text{2}</math>: LHS
 +
<math>=3\centerdot 2^{2}-10\centerdot 2+8=12-20+8=0=</math>
 +
RHS

Version vom 14:31, 20. Sep. 2008

We divide both sides by \displaystyle 3 and complete the square on the left-hand side:


\displaystyle \begin{align} & x^{2}-\frac{10}{3}x+\frac{8}{3}=\left( x-\frac{5}{3} \right)^{2}-\left( -\frac{5}{3} \right)^{2}+\frac{8}{3}=\left( x-\frac{5}{3} \right)^{2}-\frac{25}{9}+\frac{24}{9} \\ & =\left( x-\frac{5}{3} \right)^{2}-\frac{1}{9} \\ \end{align}


The equation then becomes


\displaystyle \left( x-\frac{5}{3} \right)^{2}=\frac{1}{9}

and taking the root gives the solutions as


\displaystyle x-\frac{5}{3}=\sqrt{\frac{1}{9}}=\frac{1}{3} i.e. \displaystyle x=\frac{5}{3}+\frac{1}{3}=\frac{6}{3}=2.


\displaystyle x-\frac{5}{3}=-\sqrt{\frac{1}{9}}=-\frac{1}{3} i.e. \displaystyle x=\frac{5}{3}-\frac{1}{3}=\frac{4}{3}.


Check:


\displaystyle x=\text{4}/\text{3}: LHS \displaystyle =3\centerdot \left( \frac{4}{3} \right)^{2}-10\centerdot \frac{4}{3}+8=3\centerdot \frac{16}{9}-\frac{40}{3}+\frac{8\centerdot 3}{3}=\frac{16-40+24}{3}=0= RHS

\displaystyle x=\text{2}: LHS \displaystyle =3\centerdot 2^{2}-10\centerdot 2+8=12-20+8=0= RHS