Lösung 2.3:2f
Aus Online Mathematik Brückenkurs 1
K (Lösning 2.3:2f moved to Solution 2.3:2f: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | We divide both sides by |
- | < | + | <math>3</math> |
- | {{ | + | and complete the square on the left-hand side: |
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & x^{2}-\frac{10}{3}x+\frac{8}{3}=\left( x-\frac{5}{3} \right)^{2}-\left( -\frac{5}{3} \right)^{2}+\frac{8}{3}=\left( x-\frac{5}{3} \right)^{2}-\frac{25}{9}+\frac{24}{9} \\ | ||
+ | & =\left( x-\frac{5}{3} \right)^{2}-\frac{1}{9} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | The equation then becomes | ||
+ | |||
+ | |||
+ | <math>\left( x-\frac{5}{3} \right)^{2}=\frac{1}{9}</math> | ||
+ | |||
+ | and taking the root gives the solutions as | ||
+ | |||
+ | |||
+ | <math>x-\frac{5}{3}=\sqrt{\frac{1}{9}}=\frac{1}{3}</math> | ||
+ | i.e. | ||
+ | <math>x=\frac{5}{3}+\frac{1}{3}=\frac{6}{3}=2.</math> | ||
+ | |||
+ | |||
+ | <math>x-\frac{5}{3}=-\sqrt{\frac{1}{9}}=-\frac{1}{3}</math> | ||
+ | i.e. | ||
+ | <math>x=\frac{5}{3}-\frac{1}{3}=\frac{4}{3}.</math> | ||
+ | |||
+ | |||
+ | Check: | ||
+ | |||
+ | |||
+ | <math>x=\text{4}/\text{3}</math>: LHS | ||
+ | <math>=3\centerdot \left( \frac{4}{3} \right)^{2}-10\centerdot \frac{4}{3}+8=3\centerdot \frac{16}{9}-\frac{40}{3}+\frac{8\centerdot 3}{3}=\frac{16-40+24}{3}=0=</math> | ||
+ | RHS | ||
+ | |||
+ | <math>x=\text{2}</math>: LHS | ||
+ | <math>=3\centerdot 2^{2}-10\centerdot 2+8=12-20+8=0=</math> | ||
+ | RHS |
Version vom 14:31, 20. Sep. 2008
We divide both sides by \displaystyle 3 and complete the square on the left-hand side:
\displaystyle \begin{align}
& x^{2}-\frac{10}{3}x+\frac{8}{3}=\left( x-\frac{5}{3} \right)^{2}-\left( -\frac{5}{3} \right)^{2}+\frac{8}{3}=\left( x-\frac{5}{3} \right)^{2}-\frac{25}{9}+\frac{24}{9} \\
& =\left( x-\frac{5}{3} \right)^{2}-\frac{1}{9} \\
\end{align}
The equation then becomes
\displaystyle \left( x-\frac{5}{3} \right)^{2}=\frac{1}{9}
and taking the root gives the solutions as
\displaystyle x-\frac{5}{3}=\sqrt{\frac{1}{9}}=\frac{1}{3}
i.e.
\displaystyle x=\frac{5}{3}+\frac{1}{3}=\frac{6}{3}=2.
\displaystyle x-\frac{5}{3}=-\sqrt{\frac{1}{9}}=-\frac{1}{3}
i.e.
\displaystyle x=\frac{5}{3}-\frac{1}{3}=\frac{4}{3}.
Check:
\displaystyle x=\text{4}/\text{3}: LHS
\displaystyle =3\centerdot \left( \frac{4}{3} \right)^{2}-10\centerdot \frac{4}{3}+8=3\centerdot \frac{16}{9}-\frac{40}{3}+\frac{8\centerdot 3}{3}=\frac{16-40+24}{3}=0=
RHS
\displaystyle x=\text{2}: LHS \displaystyle =3\centerdot 2^{2}-10\centerdot 2+8=12-20+8=0= RHS