Lösung 1.1:7b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (decimal comma --> decimal point)
Zeile 2: Zeile 2:
A rational number always has a decimal expansion which, after a certain decimal place, repeats itself periodically.
A rational number always has a decimal expansion which, after a certain decimal place, repeats itself periodically.
{{NAVCONTENT_STEP}}
{{NAVCONTENT_STEP}}
-
In our case, the sequence is repeated indefinitely.
+
In our case, the sequence 1416 is repeated indefinitely
-
<center><math>3{,}\underline{1416}\ \underline{1416}\ \underline{1416}\,\ldots</math></center>
+
<center><math>3\textrm{.}\underline{1416}\ \underline{1416}\ \underline{1416}\,\ldots</math></center>
In other words, the number is rational.
In other words, the number is rational.
{{NAVCONTENT_STEP}}
{{NAVCONTENT_STEP}}
Zeile 10: Zeile 10:
{{NAVCONTENT_STEP}}
{{NAVCONTENT_STEP}}
If we write
If we write
-
::<math>\insteadof[right]{10000x}{x}{} = 3\,\color{red}{&#130;}\,\underline{1416}\ \underline{1416}\ \underline{1416}\,\ldots</math>
+
::<math>\insteadof[right]{10000x}{x}{} = 3\,\textrm{.}\,\underline{1416}\ \underline{1416}\ \underline{1416}\,\ldots</math>
then
then
-
::<math>\insteadof[right]{10000x}{10x}{} = 31\,\color{red}{&#130;}\,4161\ 4161\ 4161\,\ldots</math>
+
::<math>\insteadof[right]{10000x}{10x}{} = 31\,\textrm{.}\,4161\ 4161\ 4161\,\ldots</math>
{{NAVCONTENT_STEP}}
{{NAVCONTENT_STEP}}
-
::<math>\insteadof[right]{10000x}{100x}{} = 314\,\color{red}{&#130;}\,1614\ 1614\ 161\,\ldots</math>
+
::<math>\insteadof[right]{10000x}{100x}{} = 314\,\textrm{.}\,1614\ 1614\ 161\,\ldots</math>
{{NAVCONTENT_STEP}}
{{NAVCONTENT_STEP}}
-
::<math>\insteadof[right]{10000x}{1000x}{} = 3141\,\color{red}{&#130;}\,6141\ 6141\ 61\,\ldots</math>
+
::<math>\insteadof[right]{10000x}{1000x}{} = 3141\,\textrm{.}\,6141\ 6141\ 61\,\ldots</math>
{{NAVCONTENT_STEP}}
{{NAVCONTENT_STEP}}
-
::<math>\insteadof[right]{10000x}{10000x}{} = 31416\,\color{red}{&#130;}\,\underline{1416}\ \underline{1416}\ 1\,\ldots</math>
+
::<math>\insteadof[right]{10000x}{10000x}{} = 31416\,\textrm{.}\,\underline{1416}\ \underline{1416}\ 1\,\ldots</math>
{{NAVCONTENT_STEP}}
{{NAVCONTENT_STEP}}
-
Note that, in 10000''x'' we have moved the decimal point sufficiently many places so that the decimal
+
Note that, in 10000''x'' we have moved the decimal point sufficiently many places so that the decimal expansion of 10000''x'' is in phase with the decimal expansion of ''x'', i.e. they have the same
-
expansion of
+
-
10000''x'' has come in phase with the decimal expansion of ''x'', i.e. they have the same
+
decimal expansion.
decimal expansion.
{{NAVCONTENT_STEP}}
{{NAVCONTENT_STEP}}
Therefore,
Therefore,
-
::<math>10000x-x = 31416\,{,}\,\underline{1416}\ \underline{1416}\,\ldots - 3\,{,}\,\underline{1416}\ \underline{1416}\,\ldots</math>
+
::<math>10000x-x = 31416\,\textrm{.}\,\underline{1416}\ \underline{1416}\,\ldots - 3\,\textrm{.}\,\underline{1416}\ \underline{1416}\,\ldots</math>
{{NAVCONTENT_STEP}}
{{NAVCONTENT_STEP}}
::<math>\phantom{10000x-x}{}= 31413\quad</math>(The decimal parts cancel out each other)
::<math>\phantom{10000x-x}{}= 31413\quad</math>(The decimal parts cancel out each other)

Version vom 07:13, 19. Sep. 2008