Lösung 2.1:6d
Aus Online Mathematik Brückenkurs 1
K (Lösning 2.1:6d moved to Solution 2.1:6d: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | First, we simplify the numerator and denominator for the whole fraction by rewriting as |
- | < | + | |
- | {{ | + | |
+ | <math>\begin{align} | ||
+ | & a-b+\frac{b^{2}}{a+b}=\left( a-b \right)\centerdot \frac{a+b}{a+b}+\frac{b^{2}}{a+b}=\frac{\left( a-b \right)\centerdot \left( a+b \right)+b^{2}}{a+b} \\ | ||
+ | & \frac{a^{2}-b^{2}+b^{2}}{a+b}=\frac{a^{2}}{a+b} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & 1-\left( \frac{a-b}{a+b} \right)^{2}=1-\frac{\left( a-b \right)^{2}}{\left( a+b \right)^{2}}=\frac{\left( a+b \right)^{2}}{\left( a+b \right)^{2}}-\frac{\left( a-b \right)^{2}}{\left( a+b \right)^{2}} \\ | ||
+ | & =\frac{\left( a+b \right)^{2}-\left( a-b \right)^{2}}{\left( a+b \right)^{2}} \\ | ||
+ | & =\frac{\left( a^{2}+2ab+b^{2} \right)-\left( a^{2}-2ab+b^{2} \right)}{\left( a+b \right)^{2}}=\frac{4ab}{\left( a+b \right)^{2}} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | The whole fraction is therefore | ||
+ | |||
+ | |||
+ | <math>\frac{a-b+\frac{b^{2}}{a+b}}{1-\left( \frac{a-b}{a+b} \right)^{2}}=\frac{\frac{a^{2}}{a+b}}{\frac{4ab}{\left( a+b \right)^{2}}}=\frac{a^{2}}{a+b}\centerdot \frac{\left( a+b \right)^{2}}{4ab}=\frac{a\left( a+b \right)}{4b}</math> |
Version vom 11:23, 16. Sep. 2008
First, we simplify the numerator and denominator for the whole fraction by rewriting as
\displaystyle \begin{align}
& a-b+\frac{b^{2}}{a+b}=\left( a-b \right)\centerdot \frac{a+b}{a+b}+\frac{b^{2}}{a+b}=\frac{\left( a-b \right)\centerdot \left( a+b \right)+b^{2}}{a+b} \\
& \frac{a^{2}-b^{2}+b^{2}}{a+b}=\frac{a^{2}}{a+b} \\
\end{align}
\displaystyle \begin{align} & 1-\left( \frac{a-b}{a+b} \right)^{2}=1-\frac{\left( a-b \right)^{2}}{\left( a+b \right)^{2}}=\frac{\left( a+b \right)^{2}}{\left( a+b \right)^{2}}-\frac{\left( a-b \right)^{2}}{\left( a+b \right)^{2}} \\ & =\frac{\left( a+b \right)^{2}-\left( a-b \right)^{2}}{\left( a+b \right)^{2}} \\ & =\frac{\left( a^{2}+2ab+b^{2} \right)-\left( a^{2}-2ab+b^{2} \right)}{\left( a+b \right)^{2}}=\frac{4ab}{\left( a+b \right)^{2}} \\ \end{align}
The whole fraction is therefore
\displaystyle \frac{a-b+\frac{b^{2}}{a+b}}{1-\left( \frac{a-b}{a+b} \right)^{2}}=\frac{\frac{a^{2}}{a+b}}{\frac{4ab}{\left( a+b \right)^{2}}}=\frac{a^{2}}{a+b}\centerdot \frac{\left( a+b \right)^{2}}{4ab}=\frac{a\left( a+b \right)}{4b}