Lösung 2.1:6c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 2.1:6c moved to Solution 2.1:6c: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
Because the numerators are
-
<center> [[Image:2_1_6c.gif]] </center>
+
<math>a^{2}-ab=a\left( a-b \right)</math>
-
{{NAVCONTENT_STOP}}
+
and
 +
<math>a-b</math>, both terms will have a common denominator
 +
<math>a\left( a-b \right)</math>
 +
if the top and bottom of the second term are multiplied by
 +
<math>a</math>:
 +
 
 +
 
 +
<math>\begin{align}
 +
& \frac{2a+b}{a^{2}-b}-\frac{2}{a-b}=\frac{2a+b}{a\left( a-b \right)}-\frac{2}{a-b}\centerdot \frac{a}{a} \\
 +
& =\frac{2a+b-2a}{a\left( a-b \right)}=\frac{b}{a\left( a-b \right)} \\
 +
\end{align}</math>

Version vom 11:03, 16. Sep. 2008

Because the numerators are \displaystyle a^{2}-ab=a\left( a-b \right) and \displaystyle a-b, both terms will have a common denominator \displaystyle a\left( a-b \right) if the top and bottom of the second term are multiplied by \displaystyle a:


\displaystyle \begin{align} & \frac{2a+b}{a^{2}-b}-\frac{2}{a-b}=\frac{2a+b}{a\left( a-b \right)}-\frac{2}{a-b}\centerdot \frac{a}{a} \\ & =\frac{2a+b-2a}{a\left( a-b \right)}=\frac{b}{a\left( a-b \right)} \\ \end{align}