Lösung 2.1:5b
Aus Online Mathematik Brückenkurs 1
K (Lösning 2.1:5b moved to Solution 2.1:5b: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | { | + | We can factorize the denominators as |
- | < | + | |
- | {{ | + | |
+ | <math>y^{2}-2y=y\left( y-2 \right)</math> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <math>y^{2}-4=\left( y-2 \right)\left( y+2 \right)</math> | ||
+ | [by the conjugate rule] | ||
+ | |||
+ | and then we see that the terms' lowest common denominator is | ||
+ | <math>y\left( y-2 \right)\left( y+2 \right)</math> | ||
+ | because it is the product that contains the smallest number of factors which contain both | ||
+ | <math>y\left( y-2 \right)</math> | ||
+ | and | ||
+ | <math>\left( y-2 \right)\left( y+2 \right)</math> | ||
+ | . | ||
+ | |||
+ | Now, we rewrite the fractions so that they have same denominators and start simplifying: | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & y^{2}-4=\left( y-2 \right)\left( y+2 \right) \\ | ||
+ | & y^{2}-2y=y\left( y-2 \right) \\ | ||
+ | & \frac{1}{y^{2}-2y}-\frac{2}{y^{2}-4}=\frac{1}{y\left( y-2 \right)}\centerdot \frac{y+2}{y+2}-\frac{2}{\left( y-2 \right)\left( y+2 \right)}\centerdot \frac{y}{y} \\ | ||
+ | & \\ | ||
+ | & =\frac{y+2}{y\left( y-2 \right)\left( y+2 \right)}-\frac{2y}{\left( y-2 \right)\left( y+2 \right)y} \\ | ||
+ | & \\ | ||
+ | & =\frac{y+2-2y}{y\left( y-2 \right)\left( y+2 \right)}=\frac{-y+2}{y\left( y-2 \right)\left( y+2 \right)} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | The numerator can be rewritten as | ||
+ | <math>-y+2=-\left( y-2 \right)</math> | ||
+ | and we can eliminate the common factor | ||
+ | <math>y-2</math> | ||
+ | . | ||
+ | |||
+ | |||
+ | <math>\frac{-y+2}{y\left( y-2 \right)\left( y+2 \right)}=\frac{-\left( y-2 \right)}{y\left( y-2 \right)\left( y+2 \right)}=\frac{-1}{y\left( y+2 \right)}=-\frac{1}{y\left( y+2 \right)}</math> |
Version vom 09:15, 16. Sep. 2008
We can factorize the denominators as
\displaystyle y^{2}-2y=y\left( y-2 \right)
\displaystyle y^{2}-4=\left( y-2 \right)\left( y+2 \right)
[by the conjugate rule]
and then we see that the terms' lowest common denominator is \displaystyle y\left( y-2 \right)\left( y+2 \right) because it is the product that contains the smallest number of factors which contain both \displaystyle y\left( y-2 \right) and \displaystyle \left( y-2 \right)\left( y+2 \right) .
Now, we rewrite the fractions so that they have same denominators and start simplifying:
\displaystyle \begin{align}
& y^{2}-4=\left( y-2 \right)\left( y+2 \right) \\
& y^{2}-2y=y\left( y-2 \right) \\
& \frac{1}{y^{2}-2y}-\frac{2}{y^{2}-4}=\frac{1}{y\left( y-2 \right)}\centerdot \frac{y+2}{y+2}-\frac{2}{\left( y-2 \right)\left( y+2 \right)}\centerdot \frac{y}{y} \\
& \\
& =\frac{y+2}{y\left( y-2 \right)\left( y+2 \right)}-\frac{2y}{\left( y-2 \right)\left( y+2 \right)y} \\
& \\
& =\frac{y+2-2y}{y\left( y-2 \right)\left( y+2 \right)}=\frac{-y+2}{y\left( y-2 \right)\left( y+2 \right)} \\
\end{align}
The numerator can be rewritten as
\displaystyle -y+2=-\left( y-2 \right)
and we can eliminate the common factor
\displaystyle y-2
.
\displaystyle \frac{-y+2}{y\left( y-2 \right)\left( y+2 \right)}=\frac{-\left( y-2 \right)}{y\left( y-2 \right)\left( y+2 \right)}=\frac{-1}{y\left( y+2 \right)}=-\frac{1}{y\left( y+2 \right)}