Lösung 1.3:6d
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 1.3:6d moved to Solution 1.3:6d: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | One way to compare the two numbers is to rewrite the power |
- | < | + | <math>\left( 5^{\frac{1}{3}} \right)^{4}</math> |
- | {{ | + | so that it has the same exponent as |
+ | <math>400^{\frac{1}{3}}</math>, | ||
+ | |||
+ | |||
+ | <math>\left( 5^{\frac{1}{3}} \right)^{4}=5^{\frac{1}{3}\centerdot 4}=5^{4\centerdot \frac{1}{3}}=\left( 5^{4} \right)^{\frac{1}{3}}=\left( 5\centerdot 5\centerdot 5\centerdot 5 \right)^{\frac{1}{3}}=625^{\frac{1}{3}}</math>. | ||
+ | |||
+ | Now, we see that | ||
+ | <math>\left( 5^{\frac{1}{3}} \right)^{4}>400^{\frac{1}{3}}</math>, because | ||
+ | <math>625>400</math> | ||
+ | and the exponent | ||
+ | <math>\frac{1}{3}</math> | ||
+ | is positive. |
Version vom 12:56, 15. Sep. 2008
One way to compare the two numbers is to rewrite the power \displaystyle \left( 5^{\frac{1}{3}} \right)^{4} so that it has the same exponent as \displaystyle 400^{\frac{1}{3}},
\displaystyle \left( 5^{\frac{1}{3}} \right)^{4}=5^{\frac{1}{3}\centerdot 4}=5^{4\centerdot \frac{1}{3}}=\left( 5^{4} \right)^{\frac{1}{3}}=\left( 5\centerdot 5\centerdot 5\centerdot 5 \right)^{\frac{1}{3}}=625^{\frac{1}{3}}.
Now, we see that \displaystyle \left( 5^{\frac{1}{3}} \right)^{4}>400^{\frac{1}{3}}, because \displaystyle 625>400 and the exponent \displaystyle \frac{1}{3} is positive.