Lösung 1.3:6b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 1.3:6b moved to Solution 1.3:6b: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
When a power expression has a negative exponent, the expression's value decreases when the base increases. Thus...
-
<center> [[Image:1_3_6b.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
 +
<math>0.4^{-3}>0.5^{-3}</math>
 +
 
 +
 
 +
Another way to see this is to rewrite the two powers as
 +
 
 +
 
 +
<math>0.5^{-3}=\frac{1}{0.5^{3}}</math>
 +
and
 +
<math>0.4^{-3}=\frac{1}{0.4^{3}}</math>
 +
 
 +
 
 +
and because
 +
<math>0.5^{3}>0.4^{3}</math>
 +
(see exercise a), it follows that
 +
 
 +
 
 +
<math>\frac{1}{0.4^{3}}>\frac{1}{0.5^{3}}</math>
 +
 
 +
 
 +
i.e.
 +
<math>0.4^{-3}>0.5^{-3}</math>

Version vom 12:52, 15. Sep. 2008

When a power expression has a negative exponent, the expression's value decreases when the base increases. Thus...


\displaystyle 0.4^{-3}>0.5^{-3}


Another way to see this is to rewrite the two powers as


\displaystyle 0.5^{-3}=\frac{1}{0.5^{3}} and \displaystyle 0.4^{-3}=\frac{1}{0.4^{3}}


and because \displaystyle 0.5^{3}>0.4^{3} (see exercise a), it follows that


\displaystyle \frac{1}{0.4^{3}}>\frac{1}{0.5^{3}}


i.e. \displaystyle 0.4^{-3}>0.5^{-3}