Lösung 1.3:5a
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 1.3:5a moved to Solution 1.3:5a: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | { | + | The number |
- | < | + | <math>4</math> |
- | {{ | + | can be written as |
+ | <math>4=2\centerdot 2=2^{2}</math> | ||
+ | and then, using the power rules, we obtain | ||
+ | |||
+ | |||
+ | <math>4^{\frac{1}{2}}=\left( 2^{2} \right)^{\frac{1}{2}}=2^{2\centerdot \frac{1}{2}}=2^{1}=2</math> | ||
+ | |||
+ | NOTE: another way to denote | ||
+ | <math>4^{\frac{1}{2}}</math> | ||
+ | is | ||
+ | <math>\sqrt{4}</math> | ||
+ | (the root of | ||
+ | <math>4</math> | ||
+ | ); more on this in the section on roots later in the course. |
Version vom 12:00, 15. Sep. 2008
The number \displaystyle 4 can be written as \displaystyle 4=2\centerdot 2=2^{2} and then, using the power rules, we obtain
\displaystyle 4^{\frac{1}{2}}=\left( 2^{2} \right)^{\frac{1}{2}}=2^{2\centerdot \frac{1}{2}}=2^{1}=2
NOTE: another way to denote \displaystyle 4^{\frac{1}{2}} is \displaystyle \sqrt{4} (the root of \displaystyle 4 ); more on this in the section on roots later in the course.