Lösung 1.3:4e
Aus Online Mathematik Brückenkurs 1
K  (Lösning 1.3:4e moved to Solution 1.3:4e: Robot: moved page)  | 
				|||
| Zeile 1: | Zeile 1: | ||
| - | {{  | + | Because   | 
| - | <  | + | <math>5^{9}=5^{8+1}=5^{8}\centerdot 5^{1}=5^{8}\centerdot 5</math>,   | 
| - | {{  | + | the two terms inside the brackets have   | 
| + | <math>5^{8}</math>  | ||
| + | as a common factor   | ||
| + | and can therefore be taken outside the bracket.  | ||
| + | |||
| + | |||
| + | <math>\begin{align}  | ||
| + | & \left( 5^{8}+5^{9} \right)^{-1}=\left( 5^{8}+5^{8}\centerdot 5 \right)^{-1}=\left( 5^{8}\centerdot \left( 1+5 \right) \right)^{-1} \\   | ||
| + | &  \\   | ||
| + | & =\left( 5^{8}\centerdot 6 \right)^{-1}=5^{8\centerdot \left( -1 \right)}\centerdot 6^{-1}=5^{-8}\centerdot 6^{-1}. \\   | ||
| + | \end{align}</math>  | ||
| + | |||
| + | Furthermore,    | ||
| + | <math>625=5\centerdot 125=5\centerdot 5\centerdot 25=5\centerdot 5\centerdot 5\centerdot 5=5^{4}</math>  | ||
| + | and we obtain  | ||
| + | |||
| + | |||
| + | <math>\begin{align}  | ||
| + | & 625\centerdot \left( 5^{8}+5^{9} \right)^{-1}=5^{4}\centerdot 5^{-8}\centerdot 6^{-1}=5^{4-8}\centerdot 6^{-1} \\   | ||
| + | &  \\   | ||
| + | & =5^{-4}\centerdot 6^{-1}=\frac{1}{5^{4}}\centerdot \frac{1}{6}=\frac{1}{5^{4}\centerdot 6}=\frac{1}{5\centerdot 5\centerdot 5\centerdot 5\centerdot 6} \\   | ||
| + | &  \\   | ||
| + | & =\frac{1}{3750} \\   | ||
| + | \end{align}</math>  | ||
Version vom 11:57, 15. Sep. 2008
Because \displaystyle 5^{9}=5^{8+1}=5^{8}\centerdot 5^{1}=5^{8}\centerdot 5, the two terms inside the brackets have \displaystyle 5^{8} as a common factor and can therefore be taken outside the bracket.
\displaystyle \begin{align}
& \left( 5^{8}+5^{9} \right)^{-1}=\left( 5^{8}+5^{8}\centerdot 5 \right)^{-1}=\left( 5^{8}\centerdot \left( 1+5 \right) \right)^{-1} \\ 
&  \\ 
& =\left( 5^{8}\centerdot 6 \right)^{-1}=5^{8\centerdot \left( -1 \right)}\centerdot 6^{-1}=5^{-8}\centerdot 6^{-1}. \\ 
\end{align}
Furthermore, \displaystyle 625=5\centerdot 125=5\centerdot 5\centerdot 25=5\centerdot 5\centerdot 5\centerdot 5=5^{4} and we obtain
\displaystyle \begin{align}
& 625\centerdot \left( 5^{8}+5^{9} \right)^{-1}=5^{4}\centerdot 5^{-8}\centerdot 6^{-1}=5^{4-8}\centerdot 6^{-1} \\ 
&  \\ 
& =5^{-4}\centerdot 6^{-1}=\frac{1}{5^{4}}\centerdot \frac{1}{6}=\frac{1}{5^{4}\centerdot 6}=\frac{1}{5\centerdot 5\centerdot 5\centerdot 5\centerdot 6} \\ 
&  \\ 
& =\frac{1}{3750} \\ 
\end{align}
