Lösung 1.3:4d
Aus Online Mathematik Brückenkurs 1
K  (Lösning 1.3:4d moved to Solution 1.3:4d: Robot: moved page)  | 
				|||
| Zeile 1: | Zeile 1: | ||
| - | {{  | + | The partial expression    | 
| - | <  | + | <math>2^{2^{3}}</math>  | 
| - | {{  | + | should be interpreted as   | 
| + | <math>2</math>  | ||
| + | raised to the   | ||
| + | <math>2^{3}</math>,   | ||
| + | |||
| + | and because   | ||
| + | <math>2^{3}=2\centerdot 2\centerdot 2=8</math>, thus   | ||
| + | <math>2^{2^{3}}=2^{8}</math>  | ||
| + | |||
| + | |||
| + | In order to calculate the next part of the expression,   | ||
| + | <math>\left( -2 \right)^{-4}</math>,   | ||
| + | |||
| + | it can be useful to do it a step at a time:  | ||
| + | |||
| + | |||
| + | <math>\begin{align}  | ||
| + | & \left( -2 \right)^{-4}=\frac{1}{\left( -2 \right)^{4}}=\frac{1}{\left( \left( -1 \right)\centerdot 2 \right)^{4}}=\frac{1}{\left( -1 \right)^{4}\centerdot 2^{4}} \\   | ||
| + | &  \\   | ||
| + | & =\frac{1}{1^{4}\centerdot 2^{4}}=\frac{1}{2^{4}}=2^{-4} \\   | ||
| + | \end{align}</math>  | ||
| + | |||
| + | |||
| + | Thus,  | ||
| + | |||
| + | |||
| + | <math>2^{2^{3}}\centerdot \left( -2 \right)^{-4}=2^{8}\centerdot 2^{-4}=2^{8-4}=2^{4}=16</math>  | ||
Version vom 11:53, 15. Sep. 2008
The partial expression \displaystyle 2^{2^{3}} should be interpreted as \displaystyle 2 raised to the \displaystyle 2^{3},
and because \displaystyle 2^{3}=2\centerdot 2\centerdot 2=8, thus \displaystyle 2^{2^{3}}=2^{8}
In order to calculate the next part of the expression, 
\displaystyle \left( -2 \right)^{-4}, 
it can be useful to do it a step at a time:
\displaystyle \begin{align}
& \left( -2 \right)^{-4}=\frac{1}{\left( -2 \right)^{4}}=\frac{1}{\left( \left( -1 \right)\centerdot 2 \right)^{4}}=\frac{1}{\left( -1 \right)^{4}\centerdot 2^{4}} \\ 
&  \\ 
& =\frac{1}{1^{4}\centerdot 2^{4}}=\frac{1}{2^{4}}=2^{-4} \\ 
\end{align}
Thus,
\displaystyle 2^{2^{3}}\centerdot \left( -2 \right)^{-4}=2^{8}\centerdot 2^{-4}=2^{8-4}=2^{4}=16
