Lösung 1.3:4d
Aus Online Mathematik Brückenkurs 1
K (Lösning 1.3:4d moved to Solution 1.3:4d: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | The partial expression |
- | < | + | <math>2^{2^{3}}</math> |
- | {{ | + | should be interpreted as |
+ | <math>2</math> | ||
+ | raised to the | ||
+ | <math>2^{3}</math>, | ||
+ | |||
+ | and because | ||
+ | <math>2^{3}=2\centerdot 2\centerdot 2=8</math>, thus | ||
+ | <math>2^{2^{3}}=2^{8}</math> | ||
+ | |||
+ | |||
+ | In order to calculate the next part of the expression, | ||
+ | <math>\left( -2 \right)^{-4}</math>, | ||
+ | |||
+ | it can be useful to do it a step at a time: | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \left( -2 \right)^{-4}=\frac{1}{\left( -2 \right)^{4}}=\frac{1}{\left( \left( -1 \right)\centerdot 2 \right)^{4}}=\frac{1}{\left( -1 \right)^{4}\centerdot 2^{4}} \\ | ||
+ | & \\ | ||
+ | & =\frac{1}{1^{4}\centerdot 2^{4}}=\frac{1}{2^{4}}=2^{-4} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | Thus, | ||
+ | |||
+ | |||
+ | <math>2^{2^{3}}\centerdot \left( -2 \right)^{-4}=2^{8}\centerdot 2^{-4}=2^{8-4}=2^{4}=16</math> |
Version vom 11:53, 15. Sep. 2008
The partial expression \displaystyle 2^{2^{3}} should be interpreted as \displaystyle 2 raised to the \displaystyle 2^{3},
and because \displaystyle 2^{3}=2\centerdot 2\centerdot 2=8, thus \displaystyle 2^{2^{3}}=2^{8}
In order to calculate the next part of the expression,
\displaystyle \left( -2 \right)^{-4},
it can be useful to do it a step at a time:
\displaystyle \begin{align}
& \left( -2 \right)^{-4}=\frac{1}{\left( -2 \right)^{4}}=\frac{1}{\left( \left( -1 \right)\centerdot 2 \right)^{4}}=\frac{1}{\left( -1 \right)^{4}\centerdot 2^{4}} \\
& \\
& =\frac{1}{1^{4}\centerdot 2^{4}}=\frac{1}{2^{4}}=2^{-4} \\
\end{align}
Thus,
\displaystyle 2^{2^{3}}\centerdot \left( -2 \right)^{-4}=2^{8}\centerdot 2^{-4}=2^{8-4}=2^{4}=16